Answer: 29.83m
Explanation: coefficient of friction= v^2/rg
Coefficient of friction=0.27
V=32km/h
Convert km/h to m/s
32*1000/3600
32000/3600=8.89m/s
0.27=8.89^2/r*9.81
0.27*9.81*r=79.0321
R= 79.0321/2.6487
R=29.83m
Answer:
The distance covered by the body is, S = 800 m
Explanation:
Given data,
The initial velocity of the body, u = 30 m/s
The acceleration of the body, a = 10 m/s²
Let the time period of travel be, t = 10 s
Using the II equations of motion,
S = ut + ½ at²
Substituting the given values,
S = 30 x 10 + ½ x 10 x 10²
S = 800 m
Hence, the distance covered by the body is, S = 800 m
C is a non-metal and so is O. So the answer is CO
Answer:
I hope 2 amperes of current passes
Answer:
Explanation:
for rolling motion down the plane acceleration is given by the following expression
a = g sinθ / (1 + k² / R²)
here k is radius of gyration and R is radius of the object rolling down .
for cylinder I = 1/2 m R²
so k² = R² / 2
k² / R² = 1/2
a = g sinθ /( 1 + 1 / 2 )
= 2 / 3 x g sinθ
v = √ 2 a s
= √ (2 x 2 / 3 x g sinθ s )
= √ (4 / 3 x g h )
= √ (4 / 3 x g x .5 )
= √ 2g / 3
for sphere I = 2/5 m R²
so k² = 2/5 R²
k² / R² = 2 / 5
a = g sinθ / (1 + 2 / 5)
= 5 / 7 x g sinθ
v = √ 2 a s
= √ (2 x 5 / 7 x g sinθ s )
= √ (10/7 x g h )
Given
√ (10/7 x g h ) = √ 2g / 3
10/7 x g h = 2g / 3
h = 14 / 30 m
= .47 m .