Answer:
5. Is greater than mg, always
Explanation:
If the cone has an inclination of angle β, the sum of forces will be:
x-axis (centripetal axis):
N*sin β = m*ax where ax is the centripetal acceleration
y-axis:
N*cos β - m*g = m*ay where ay is the vertical acceleration. If the block starts falling down, ay will be negative. If the block starts sliding up, ay will be positive. If the block does not move up nor down, ay=0.
Solving for N:

If ay is positive or zero, N will be greater than mg. If ay is negative, N will be less than mg.
If the block is sliding along a horizontal circular path (not up, nor down), ay = 0, so N will always be greater than mg.
Answer:
b
Explanation:
because all are factors that determine the resistivity of a material
Answer:
5.72 s
Explanation:
From Newton's law, F = ma
The East is +ve direction, Hence,
F = +8930 N
m = 2290 kg
a = ?
8930 = 2290 × a
a = 8930/2290 = 3.90 m/s²
So, we will find the time it takes the car to stop using the equations of motion
a = 3.90 m/s²
u = initial velocity of the car = - 22.3 m/s (the velocity is to the west)
v = final velocity of the car = 0 m/s (since the car comes to rest)
t = time taken for the car to come to rest = ?
v = u + at
0 = - 22.3 + (3.90)(t)
3.9t = 22.3
t = 5.72 s
Who was the proponent of the Neo-classicism?
a) Claude Debussy
b) Joseph Maurice Ravel
c) Igor Stravinsky
d) Arnold Schoenberg
Answer:
126.56 m
Explanation:
Applying,
-F = ma............. Equation 1
Where F = frictional force, m = mass of the car, a = acceleration.
Note: Frictional force is negative because it act in opposite direction to motion
But,
F = mgμ.......... Equation 2
Where g = acceleration due to gravity, μ = coefficient of friction
Substitute equation 2 in equation 1
-mgμ = ma
a = -gμ.............. Equation 3
From the question,
Given: μ = 0.735
Constant: 9.8 m/s²
Substitute these values in equation 3
a = -9.8×0.735
a = -7.203 m/s²
Finally,
Applying
v² = u²+2as.............. Equation 4
Where v = final velocity, u = initial velocity, s = distance
From the question,
Given: u = 42.7 m/s, v = 0 m/s (to a stop), a = -7.203 m/s²
Substitute these values into equation 4
0² = 42.7²+2(-7.203)s
-1823.29 = -14.406s
s = -1823.29/-14.406
s = 126.56 m