Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s
Answer:Point B
Explanation:When it is at the bottom of its swing (arm straight up and down). When it is at its lowest point, Gravity can not pull it down any further. This position also has the most kinetic energy because after it passes the bottom, it goes back up again and loses speed. so when the pendulum is at the bottom it is traveling the fastest it will go.
Her acceleration is zero, because her velocity is not changing.
The difference between them is in regard to what spins and what is fixed. In an alternator<span>, electricity is produced when a magnetic field spins inside the stator (windings of wired) </span>
When a source of light moves away from you, you see the characteristic lines in its spectrum move toward slightly longer wavelengths. Lines in the visible part of the spectrum move toward the red end.
When a source of light moves toward you, you see the characteristic lines in its spectrum move to slightly shorter wavelengths. Lines in the visible part of the spectrum move toward the violet end.
We see these 'shifts' when we look at the spectra of stars. "Red shift" is the change in the spectrum of a star when it's moving away from us, and "Blue shift" is the change when it's moving toward us. These measurements are the only way we have of measuring the radial motion of stars, and their speeds toward or away from us.
The whole subject of why a spectrum shifts toward longer or shorter wavelengths was explained by the Austrian physicist Christian Doppler in 1842, and it's known as the "Doppler Shift" in honor of him and his work.