They are marsupials that are considered "specialist eaters" since they only eat a certain type of leaf. While generalist feeders aren't as picky as the koala bears. I hope this helps!
As per above given data
initial velocity = 19.3 km/s
final velocity = - 18.8 km/s
now in order to find the change in velocity




Part b)
Now we need to find acceleration
acceleration is given by formula

given that


now the acceleration is given as


so above is the acceleration
If you increase the mass m of the car, the force F will increase, while acceleration a is kept constant. Because F and m are directly proportional.
If you increase the acceleration a of the car, the force F will increase, while mass m is kept constant. Because F and a are directly proportional.
How can Newton's laws be verified experimentally; is by setting this experiment, and changing one variable while keeping the other constant, then observe the change in F.
Hope this helps.
Answer:
Monochronic.
Explanation:
This view is called as Monochronic.
The dictionary definition of Mono-chronic is that Monochronic people just like to do one thing at a time. They respect a certain uniformity and sense of being a suitable place and time for different activities. They don't esteem interruptions. It has been generally observe that their focus and productivity remains higher than the polychronic.( Those we are comfortable with performing multiple task at a time)
You asked a question. I'm about to answer it.
Sadly, I can almost guarantee that you won't understand the solution.
This realization grieves me, but there is little I can do to change it.
My explanation will be the best of which I'm capable.
Here are the Physics facts I'll use in the solution:
-- "Apparent magnitude" means how bright the star appears to us.
-- "Absolute magnitude" means the how bright the star WOULD appear
if it were located 32.6 light years from us (10 parsecs).
-- A change of 5 magnitudes means a 100 times change in brightness,
so each magnitude means brightness is multiplied or divided by ⁵√100 .
That's about 2.512... .
-- Increasing magnitude means dimmer.
Decreasing magnitude means brighter.
+5 is 10 magnitudes dimmer than -5 .
-- Apparent brightness is inversely proportional to the square
of the distance from the source (just like gravity, sound, and
the force between charges).
That's all the Physics. The rest of the solution is just arithmetic.
____________________________________________________
-- The star in the question would appear M(-5) at a distance of
32.6 light years.
-- It actually appears as a M(+5). That's 10 magnitudes dimmer than M(-5),
because of being farther away than 32.6 light years.
-- 10 magnitudes dimmer is ( ⁵√100)⁻¹⁰ = (100)^(-2) .
-- But brightness varies as the inverse square of distance,
so that exponent is (negative double) the ratio of the distances,
and the actual distance to the star is
(32.6) · (100)^(1) light years
= (32.6) · (100) light years
= approx. 3,260 light years . (roughly 1,000 parsecs)
I'll have to confess that I haven't done one of these calculations
in over 50 years, and I'm not really that confident in my result.
If somebody's health or safety depended on it, or the success of
a space mission, then I'd be strongly recommending that you get
a second opinion.
But, quite frankly, I do feel that mine is worth the 5 points.