1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
2 years ago
7

The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track. T

he freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s^2 in a direction opposite to the train's velocity, while the freight train continues with constant speed.Take x=0 at the location of the front of the passenger train when the engineer applies the brakes.(a) Will the cows nearby witness a collision?(b) If so, where will it take place?(c) On a single graph, sketch the positions of the front of the passenger train and the back of the freight train.(d) If the speed of the two trains and the deceleration of the passenger train remain as originally stated, how much of a head start would the freight train need in order to avoid a collision?(e) If instead, the speed of the two trains and the head start of the freight train remain as originally stated, find the deceleration of the passenger train necessary to avoid a collision.(f) Suppose that someone on board the freight train got the message that there was a problem and begin to accelerate to escape the collision. How much acceleration would be necessary?

Physics
1 answer:
zaharov [31]2 years ago
8 0

a) The train collide after 22.5 seconds

b) The trains collide at the location x = 537.5 m

c) See graph in attachment

d) The freight train must have a head start of 500 m

e) The deceleration must be smaller (towards negative value) than -0.25 m/s^2

f) The two trains avoid collision if the acceleration of the freight train is at least 0.35 m/s^2

Explanation:

a)

We can describe the position of the passenger train at time t with the equation

x_p(t)=u_p t + \frac{1}{2}at^2

where

u_p = 25.0 m/s is the initial velocity of the passenger train

a=-0.100 m/s^2 is the deceleration of the train

On the other hand, the position of the freight train is given by

x_f(t)=x_0 + v_f t

where

x_0=200 m is the initial position of the freight train

v_f = 15.0 m/s is the constant velocity of the train

The collision occurs if the two trains meet, so

x_p(t)=x_f(t)\\u_pt+\frac{1}{2}at^2=x_0+v_ft\\25t+\frac{1}{2}(-0.100)t^2=200+15t\\0.050t^2-10t+200=0

This is a second-order equation that has two solutions:

t = 22.5 s

t = 177.5 s

We are interested in the 1st solution, which is the first time at which the passenger train collides with the freight train, so t = 22.5 seconds.

b)

In order to find the location of the collision, we just need to substitute the time of the collision into one of the expression of the position of the trains.

The position of the freight train is

x_f(t)=x_0 +v_ft

And substituting t = 22.5 s, we find:

x_f(22.5)=200+(15)(22.5)=537.5 m

We can verify that the passenger train is at the same position at the time of the collision:

x_p(22.5)=(25.0)(22.5)+\frac{1}{2}(-0.100)(22.5)^2=537.5 m

So, the two trains collide at x = 537.5 m.

c)

In the graph in attachment, the position-time graph of each train is represented. We have:

  • The freight train is moving at constant speed, therefore it is represented with a straight line with constant slope (the slope corresponds to its velocity, so 15.0 m/s)
  • The passenger train has a uniformly accelerated motion, so it is a parabola: at the beginning, the slope (the velocity) is higher than that of the freight train, however later it decreases due to the fact that the train is decelerating

The two trains meet at t = 22.5 s, where the position is 537.5 m.

d)

In order to avoid the collision, the freight train must have a initial position of

x_0'

such that the two trains never meet.

We said that the two trains meet if:

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0' + v_f t

Re-arranging,

\frac{1}{2}at^2+(u_p-v_f)t-x_0'=0\\-\frac{1}{2}at^2+(v_f-u_p)t+x_0'=0

Substituting the values for the acceleration and the velocity,

0.05t^2-10t+x_0'=0

The solution of this equation is given by the formula

t=\frac{+10\pm \sqrt{10^2-4\cdot 0.05 \cdot x_0'}}{2(0.05)}

The two trains never meet if the discrimant is negative (so that there are no solutions to the equation), therefore

10^2-4\cdot 0.05 \cdot x_0'100\\x_0'>500 m

Therefore, the freight train must have a head start of 500 m.

e)

In this case, we want to find the acceleration a' of the passenger train such that the two trains do not collide.

We solve the problem similarly to part d):

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}a't^2=x_0 + v_f t

Re-arranging

\frac{1}{2}a't^2+(u_p-v_f)t-x_0=0\\-\frac{1}{2}a't^2+(v_f-u_p)t+x_0=0

Substituting,

-0.5at^2-10t+200=0

The solution to this equation is

t=\frac{+10\pm \sqrt{10^2-4\cdot (-0.5a') \cdot (200)}}{2(0.05)}

Again, the two trains never meet if the discriminant is negative, so

10^2-4\cdot (-0.5a') \cdot (200)

So, the deceleration must be smaller (towards negative value) than -0.25 m/s^2

f)

In this case, the motion of the freight train is also accelerated, so its position at time t is given by

x_f(t)=x_0 + v_f t + \frac{1}{2}a_ft^2

where a_f is the acceleration of the freight train.

Then we solve the problem similarly to the previous part: the two trains collide if their position is the same,

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0 + v_f t+\frac{1}{2}a_ft^2

Re-arranging,

\frac{1}{2}(a_f-a)t^2+(v_f-u_p)t+x_0=0\\\\\frac{1}{2}(a_f-0.100)t^2-10t+200=0

And the solution is

t=\frac{+10\pm \sqrt{10^2-4\cdot (0.5a_f-0.05) \cdot (200)}}{2(0.5a_f-0.05)}

Again, the two trains avoid collision if the discriminant is negative, so

10^2-4\cdot (0.5a_f-0.05) \cdot (200)0.35 m/s^2

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

You might be interested in
Which statement is true about the thermal energy of an object? Choose the correct answer. 1). Thermal energy is the internal pot
Brums [2.3K]
This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects.
5 0
2 years ago
A bird flies overhead from where you stand at an altitude of 270.0ĵ m and at a velocity horizontal to the ground of 14.0î m/is.
Varvara68 [4.7K]

Answer:

L = 8694 Kg.m²/s

Explanation:

r = 270 ĵ m

v = 14 î m/s

m = 2.3 kg

θ = 90º

L = ?

We can apply the equation

L = m*v*r*Sin θ

L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s

8 0
3 years ago
Par 1/2
BaLLatris [955]

part 1

mass = ρ x V

mass = 1739 kg/m³ x 3.8 km³ = 6608.2 kg

PE (potential energy)= mgh

PE = 6608.2 kg x 9.81 x 403

PE = 2.61 x 10⁷ J

part 2

megaton of TNT (Mt) =4.2 x 10¹⁵ J

convert PE to Mt:

2.61 x 10⁷ J : 4.2 x 10¹⁵ J = 6.21 x 10⁻⁹ Mt

4 0
2 years ago
A standard 1 kilogram weight is a cylinder 54.0 mm in height and 55.0 mm in diameter. what is the density of the material
denis-greek [22]

The radius of the cylinder is equal to half the diameter:

r=\frac{d}{2}=\frac{55.0 mm}{2}=27.5 mm

The volume of the cylinder is given by:

V=\pi r^2 h=\pi (27.5 mm)^2 (54.0 mm)=1.28 \cdot 10^5 mm^3

where h is the heigth of the cylinder. Converting into meters,

V=1.28 \cdot 10^{-4} m^3

And the density of the material will be given by the ratio between the mass and the volume:

d=\frac{m}{V}=\frac{1 kg}{1.28 \cdot 10^{-4} m^3}=7812.5 kg/m^3

5 0
3 years ago
Teachers are interested in knowing what study techniques their students are utilizing. The researchers randomly select every 10t
uranmaximum [27]

Answer:

Simple Random Sample (SRS)

Explanation:

5 0
3 years ago
Other questions:
  • Explain what happens to the atoms in the reactants during a chemical reaction
    5·1 answer
  • Which of these stopped operating in 2011
    10·2 answers
  • These four surfaces are opaque; that is they reflect or absorb certain rays of light determine the color
    8·1 answer
  • Hell Im Fatima berry i need help PLZZ
    14·1 answer
  • Discuss the relationship between acceleration and velocity. Are these scalar or vector quantities?
    10·1 answer
  • Our brain works to create:
    8·2 answers
  • A spherical, non-conducting shell of inner radius = 10 cm and outer radius = 15 cm carries a total charge Q = 13 μC distributed
    15·1 answer
  • You grab a car door handle in the summer (energy transfer to heat up the handle ____) and it burns you through energy transfer.
    7·1 answer
  • HELP ME PLEASE ASAP!!!!! WILL GIVE BRAINLIEST, FIVE STARS, AND HEART!!!!!<br>(picture included)
    15·2 answers
  • A 0.70kW vacuum cleaner is used for 20 minutes. How much energy does it use? Give your answer in
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!