1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
7

The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track. T

he freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s^2 in a direction opposite to the train's velocity, while the freight train continues with constant speed.Take x=0 at the location of the front of the passenger train when the engineer applies the brakes.(a) Will the cows nearby witness a collision?(b) If so, where will it take place?(c) On a single graph, sketch the positions of the front of the passenger train and the back of the freight train.(d) If the speed of the two trains and the deceleration of the passenger train remain as originally stated, how much of a head start would the freight train need in order to avoid a collision?(e) If instead, the speed of the two trains and the head start of the freight train remain as originally stated, find the deceleration of the passenger train necessary to avoid a collision.(f) Suppose that someone on board the freight train got the message that there was a problem and begin to accelerate to escape the collision. How much acceleration would be necessary?

Physics
1 answer:
zaharov [31]3 years ago
8 0

a) The train collide after 22.5 seconds

b) The trains collide at the location x = 537.5 m

c) See graph in attachment

d) The freight train must have a head start of 500 m

e) The deceleration must be smaller (towards negative value) than -0.25 m/s^2

f) The two trains avoid collision if the acceleration of the freight train is at least 0.35 m/s^2

Explanation:

a)

We can describe the position of the passenger train at time t with the equation

x_p(t)=u_p t + \frac{1}{2}at^2

where

u_p = 25.0 m/s is the initial velocity of the passenger train

a=-0.100 m/s^2 is the deceleration of the train

On the other hand, the position of the freight train is given by

x_f(t)=x_0 + v_f t

where

x_0=200 m is the initial position of the freight train

v_f = 15.0 m/s is the constant velocity of the train

The collision occurs if the two trains meet, so

x_p(t)=x_f(t)\\u_pt+\frac{1}{2}at^2=x_0+v_ft\\25t+\frac{1}{2}(-0.100)t^2=200+15t\\0.050t^2-10t+200=0

This is a second-order equation that has two solutions:

t = 22.5 s

t = 177.5 s

We are interested in the 1st solution, which is the first time at which the passenger train collides with the freight train, so t = 22.5 seconds.

b)

In order to find the location of the collision, we just need to substitute the time of the collision into one of the expression of the position of the trains.

The position of the freight train is

x_f(t)=x_0 +v_ft

And substituting t = 22.5 s, we find:

x_f(22.5)=200+(15)(22.5)=537.5 m

We can verify that the passenger train is at the same position at the time of the collision:

x_p(22.5)=(25.0)(22.5)+\frac{1}{2}(-0.100)(22.5)^2=537.5 m

So, the two trains collide at x = 537.5 m.

c)

In the graph in attachment, the position-time graph of each train is represented. We have:

  • The freight train is moving at constant speed, therefore it is represented with a straight line with constant slope (the slope corresponds to its velocity, so 15.0 m/s)
  • The passenger train has a uniformly accelerated motion, so it is a parabola: at the beginning, the slope (the velocity) is higher than that of the freight train, however later it decreases due to the fact that the train is decelerating

The two trains meet at t = 22.5 s, where the position is 537.5 m.

d)

In order to avoid the collision, the freight train must have a initial position of

x_0'

such that the two trains never meet.

We said that the two trains meet if:

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0' + v_f t

Re-arranging,

\frac{1}{2}at^2+(u_p-v_f)t-x_0'=0\\-\frac{1}{2}at^2+(v_f-u_p)t+x_0'=0

Substituting the values for the acceleration and the velocity,

0.05t^2-10t+x_0'=0

The solution of this equation is given by the formula

t=\frac{+10\pm \sqrt{10^2-4\cdot 0.05 \cdot x_0'}}{2(0.05)}

The two trains never meet if the discrimant is negative (so that there are no solutions to the equation), therefore

10^2-4\cdot 0.05 \cdot x_0'100\\x_0'>500 m

Therefore, the freight train must have a head start of 500 m.

e)

In this case, we want to find the acceleration a' of the passenger train such that the two trains do not collide.

We solve the problem similarly to part d):

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}a't^2=x_0 + v_f t

Re-arranging

\frac{1}{2}a't^2+(u_p-v_f)t-x_0=0\\-\frac{1}{2}a't^2+(v_f-u_p)t+x_0=0

Substituting,

-0.5at^2-10t+200=0

The solution to this equation is

t=\frac{+10\pm \sqrt{10^2-4\cdot (-0.5a') \cdot (200)}}{2(0.05)}

Again, the two trains never meet if the discriminant is negative, so

10^2-4\cdot (-0.5a') \cdot (200)

So, the deceleration must be smaller (towards negative value) than -0.25 m/s^2

f)

In this case, the motion of the freight train is also accelerated, so its position at time t is given by

x_f(t)=x_0 + v_f t + \frac{1}{2}a_ft^2

where a_f is the acceleration of the freight train.

Then we solve the problem similarly to the previous part: the two trains collide if their position is the same,

x_p(t)=x_f(t)\\u_p t + \frac{1}{2}at^2=x_0 + v_f t+\frac{1}{2}a_ft^2

Re-arranging,

\frac{1}{2}(a_f-a)t^2+(v_f-u_p)t+x_0=0\\\\\frac{1}{2}(a_f-0.100)t^2-10t+200=0

And the solution is

t=\frac{+10\pm \sqrt{10^2-4\cdot (0.5a_f-0.05) \cdot (200)}}{2(0.5a_f-0.05)}

Again, the two trains avoid collision if the discriminant is negative, so

10^2-4\cdot (0.5a_f-0.05) \cdot (200)0.35 m/s^2

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

You might be interested in
A polarized light that has an intensity I0 = 60.0 W/m² is incident on three polarizing disks whose planes are parallel and cente
nikitadnepr [17]

Answer:

The transmitted intensity through all polarizers is I_3 =41.31 W/m^2

Explanation:

 According to Malu's law the intensity of a polarized light having an initial intensity I_0 is mathematically represented as

               I = I_0cos^2 \theta

Now  considering the polarizer(The polarizing disk) the equation above becomes

          I = I_0 (cos^2 \theta)^n

Where n is the number of polarizers

       Substituting  60.0W/m^2 for the initial intensity 3 for the n and 20° for the angle of rotation

           I_3 = 60 (cos^220)^3

               =41.31 W/m^2

             

     

                         

6 0
3 years ago
Describe what would happen if you rubbed a mineral with a Mohs hardness value of 7 against a mineral with a value of 5?
chubhunter [2.5K]
The mineral with Mohs hardness would be scratched because the mineral with Mohs 7 hardness is stronger than the Mohs 5 mineral. Eventually, that mineral would turn into dust if you kept rubbing it.
8 0
3 years ago
Calculate the orbital period for Jupiter's moon Io, which orbits 4.22×10^5km from the planet's center (M=1.9×10^27kg) .
Verdich [7]

According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>



In other words, this law states a relation between the orbital period T of a body (moon, planet, satellite) orbiting a greater body in space with the size a of its orbit.



This Law is originally expressed as follows:



<h2>T^{2} =\frac{4\pi^{2}}{GM}a^{3}    (1) </h2>

Where;


G is the Gravitational Constant and its value is 6.674(10^{-11})\frac{m^{3}}{kgs^{2}}



M=1.9(10^{27})kg is the mass of Jupiter


a=4.22(10^{5})km=4.22(10^{8})m  is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)



If we want to find the period, we have to express equation (1) as written below and substitute all the values:



<h2>T=\sqrt{\frac{4\pi^{2}}{GM}a^{3}}    (2) </h2>

T=\sqrt{\frac{4\pi^{2}}{6.674(10^{-11})\frac{m^{3}}{kgs^{2}}1.9(10^{27})kg}(4.22(10^{8})m)^{3}}    



T=\sqrt{\frac{2.966(10^{27})m^{3}}{1.268(10^{17})m^{3}/s^{2}}}    



T=\sqrt{2.339(10^{10})s^{2}}    



Then:


<h2>T=152938.0934s    (3) </h2>

Which is the same as:



<h2>T=42.482h     </h2>

Therefore, the answer is:



The orbital period of Io is 42.482 h



7 0
3 years ago
A water wave has a speed of 23.0 meters/second. If the wave’s frequency is 0.0680 hertz, what is the wavelength?
tankabanditka [31]
     Using the Fundamental Equation of Wave, we have:

v=\lambda f \\ \lambda= \frac{23}{0.068}  \\ \boxed {\lambda \approx 338m}

Letter B
3 0
3 years ago
Read 2 more answers
What is the approximate wavelength of a light whose second-order dark band forms a diffraction angle of 15.0° when it passes thr
anzhelika [568]
414nm just took the test
7 0
3 years ago
Read 2 more answers
Other questions:
  • How do you calculate mass using Newton’s 2nd Law?
    15·2 answers
  • A. How many atoms of helium gas fill a spherical balloon of diameter 29.6 cm at 19.0°C and 1.00 atm? b. What is the average kine
    13·1 answer
  • A man pulls on his dog's leash to keep him from running after a bicycle. Which term best describes this example?
    9·2 answers
  • Which element is most likely to bend without breaking?
    5·2 answers
  • Simple Circuit and Ohm's Law Check-for-Understanding
    5·2 answers
  • QUESTION 6
    15·2 answers
  • Consider the circuit. Switches are added at points A, B, C, and D. All the switches are closed EXCEPT the switch at position D,
    14·2 answers
  • Which state of matter has a define shape and definite volume
    5·2 answers
  • It is a set of measure designed to determine the level of physical fitness?
    11·1 answer
  • How can you say that light is a form of energy?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!