Question is missing:
"What is the gravitational force between the Sun and Jupiter?"
Answer:

Explanation:
The gravitational force between two objects is given by

where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have
is the mass of the sun
is the mass of Jupiter
is their separation
Solving the equation, we find

The density would decrease because the mass of an object deals with the amount of atoms in the object and since none of the object was reduced "a" wouldn't be the answer. Depending on the amount and period of time that the heat is applied the liquid could change into a gas so "d" wouldn't be correct. Density is the mass÷ volume, and when you add heat to an object it could take up different amounts of space because of its particles gaining energy and spreading apart. So the density would decrease because of the volume increasing. So I believe that "c" is the answer.
Answer:
model 3
Explanation:
Boron with atomic number 5 will have 3 valence electrons
Your kinetic energy goes down and your potential energy rises. This happens till you reach the top or start falling, in which the opposite happens. Hope this helps!
<span> Beryllium has an exclusive </span>+2<span> oxidation state in all of its compounds</span>