1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
2 years ago
8

A body of mass 80kg moving with a velocity of 6m/s hits a stationary body

Physics
1 answer:
Sauron [17]2 years ago
8 0

Answer:

4 m/s

Explanation:

Conservation of momentum ,  mv

Before collision  80 kg * 6 m/s  = 480  kg-m/s  

   after the collision,

         the momentum is the same but the mass is 80+40 kg =120 kg

 mv = 480

120 * v = 480

v = 4 m/s

You might be interested in
a ball is thrown vertically upward with an initial speed of 40 m/s. how high is the ball above the ground when it stops
NISA [10]

Answer:

80m, assuming g=10m/s^2

Explanation:

40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.

5 0
3 years ago
Read 2 more answers
The length of a simple pendulum is 0.66 m, the pendulum bob has a mass of 310 grams, and it is released at an angle of 12 degree
lina2011 [118]
A) the periodic time is given by the equation;
 T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
   = 6.28 × √0.0673
    = 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
 thus; frequency = 0.614 Hz

b)  The vertical distance, the height is given by
 h= 0.66 cos 12
 h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
 mgh = 1/2mv²
  v² = 2gΔh = 2×9.81 × 0.01 
                   = 0.1962
v = 0.443 m/s

c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
   = 1/2 × 0.310 × 0.443²
   = 0.0304 J


4 0
3 years ago
Free Fall: A rock is thrown directly upward from the edge of a flat roof of a building that is 56.3 meters tall. The rock misses
Slav-nsk [51]

Answer:

v₀₁= 5.525 m / s

Explanation

Freefall Formulas :

The sign of acceleration due to gravity  (g) is positive if the object is going down and negative if the object is going up.

vf= v₀+gt  

vf²=v₀²+2*g*h

h= v₀t+ (1/2)*g*t²

Where:  

h: hight in meters (m)    

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

g: acceleration due to gravity in m/s²

Kinematics of the rock from the starting point with vo until it reaches its maximum height:

vf₁= v₀₁-gt₁  :vf₁ =0 to maximum height

0= v₀₁-gt₁

v₀₁ = g*t₁

t₁ =v₀₁ / g      Equation (1)

vf₁²= v₀₁²-2*g*h₁   : vf₁ =0 to maximum height

0 = v₀₁²-2*g*h₁

2*g*h₁ = v₀₁²

h₁ = (v₀₁²)/(2g)   Equation (2)

Kinematics of the rock when it falls from the maximum height until it touches the floor

h₂= v₀₂t+ (1/2)*g*t₂²  v₀₂=vf₁ =0

h₂= 0+ (1/2)*g*t₂²

h₂= (1/2)*g*t₂²   Equation (3)

Equation that relates h₁ to h₂

h₂=  h₁ + 56.3  ,  h₁ = (v₀₁²)/(2g)

h₂= (v₀₁²)/(2g) + 56.3  Equation (4)

Equation that relates t₁ to t₂

t₁ + t₂ =4 s

t₂ =4 -t₁

t₂ =4 -(v₀₁/g )

Calculation of v₀₁

We replace equation 4 and equation 5 in equation 3

(v₀₁²)/(2g) + 56.3 = (1/2)*g*(4 -(v₀₁/g ) )²

(v₀₁²)/(2g) + 56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g )+((v₀₁/g )²)

we eliminate (v₀₁²)/(2g) on both sides of the equation

56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g ))

56.3 = 78.4 - 4*v₀₁

4*v₀₁ =78.4-56.3

v₀₁= (78.4-56.3) / ( 4)

v₀₁= 5.525 m / s

7 0
3 years ago
A horizontal object-spring system oscillates with an amplitude of 2.8 cm. If the spring constant is 275 N/m and object has a mas
Lisa [10]

Answer:

(a) the mechanical energy of the system, U = 0.1078 J

(b) the maximum speed of the object, Vmax = 0.657 m/s

(c) the maximum acceleration of the object, a_max = 15.4 m/s²

Explanation:

Given;

Amplitude of the spring, A = 2.8 cm = 0.028 m

Spring constant, K = 275 N/m

Mass of object, m = 0.5 kg

(a) the mechanical energy of the system

This is the potential energy of the system, U = ¹/₂KA²

U = ¹/₂ (275)(0.028)²

U = 0.1078 J

(b) the maximum speed of the object

V_{max} =\omega*A=  \sqrt{\frac{K}{M} } *A\\\\V_{max} = \sqrt{\frac{275}{0.5} } *0.028\\\\V_{max} = 0.657 \ m/s

(c) the maximum acceleration of the object

a_{max} = \frac{KA}{M} \\\\a_{max} = \frac{275*0.028}{0.5}\\\\a_{max} = 15.4 \ m/s^2

6 0
3 years ago
A parallel circuit contains an 18-V battery wired with 2 bulbs with resistances of 8
RSB [31]

Answer:

See below

Explanation:

Total current will be   18 v/ 8 ohms +   18v / 24 ohms = 3 amps

Equivalent resistance   =   1 / (1/8 + 1/24) = 6 Ω

7 0
2 years ago
Other questions:
  • Scientific question must be
    9·1 answer
  • If a snail travels at 5 m/s, how far will it travel in 90 seconds?
    11·2 answers
  • An object is accelerating if there is a change in speed and/ or which factor A.Time B.Position C.Direction D.Displacment
    5·2 answers
  • Express each of the following in ms -1 <br>a) 18kmh-1<br>​
    14·1 answer
  • Students measured the mass of 25.0 mL of water and found it be 25.4 g. The accepted mass is 25.0 g. What is the percent error of
    11·2 answers
  • A 213.7 kg satellite is in a circular orbit of 22,236 miles (35,768 km) in radius. The force keeping the satellite in orbit is 4
    10·2 answers
  • How to write a composition about the shopping day​
    7·1 answer
  • Jonah observes the Sun through a special filtered telescope during a total solar eclipse. He sees a red ring and a faint white r
    6·2 answers
  • Seesaw unbalanced force explain
    7·1 answer
  • A simple harmonic transverse wave is propagating along a string towards the left direction as shown in the figure. figure shows
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!