I'm not completely sure but if I did know I would definitely tell u
Explanation:
Saturated solid/liquid solution is changed to an unsaturated solution by the dilution process.
When the saturated solution is diluted by addition large quantity of solvent it changed to an unsaturated solution.
Saturated solid/liquid solution can also be changed to an unsaturated solution by increasing the temperature or heating the solution.
A saturated solution is a solution where further solute will not dissolve in the solvent.
An unsaturated solution is a solution in which has the ability to dissolve more solute.
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Factors that determine ionization energy:
- Electronic Repulsion - If the electronic density decreases, the ionization energy with increase and vice versa. If an electron gets released, it decreases the electronic repulsion. This makes releasing another electron harder than the first on unless the electron that is being released comes from another energetic level.
- # Of Energy Levels - The more energy cores that get filled up, the more ionization levels decrease. When we see the energy levels go from top to bottom, the ionization also go from most to least. This is why ionization occurs on the highest level.
- Nuclear Charge - The higher the atomic number, the higher charge in the nuclei. This also makes the ionization energy higher as it increases from left to right of in other words, if the nuclear charge gets higer, the energy gets higher as well.
Factors that determine atomic volume:
- How many protons are in the nucleus (nuclear charge)
- How many energy levels carry electrons (electrons in outer energy level)
Best of Luck!