1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VARVARA [1.3K]
3 years ago
13

Refrigerant-134a enters an adiabatic compressor at -30oC as a saturated vapor at a rate of 0.45 m3 /min and leaves at 900 kPa an

d 55oC. Determine (a) the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the rate of exergy destruction and the second-law efficiency of the compressor. Take T0
Engineering
1 answer:
saw5 [17]3 years ago
4 0

Answer:

a) 1.918 kw

b) 86.23%

c) 0.26 kw

Explanation:

Given data:

T1 = -30°C = 243 k  , T0 = 27°C

using steam tables

h1 = 232.19 KJ/kg

s1 = 0.9559 Kj/Kgk

T2 = 55°C   P2 = 900 kPa

Psat = 1492 kPa,  h2 = 289.95 Kj/Kg, s2 = 0.9819 Kj/kgk , m = 0.0332 kg/s

<u>a) Determine the power input to the compressor</u>

power input = 1.918 kw

<u>b) Determine isentropic efficiency of compressor</u>

Isentropic efficiency = 86.23%

<u>c) Determine rate of exergy destruction</u>

rate = 0.26 kw

Attached below is the detailed solution of the given problems

You might be interested in
Which apparatus is likely to carry a ladder? (There may be more than one answer.)
Aloiza [94]
B and D
hope this helped
4 0
3 years ago
In part A you are asked to write the pseudocode for the program. In part B you are asked to write the syntax of the code for the
Naya [18.7K]

Answer:

C++.

Explanation:

#include <iostream>

#include <string>

using namespace std;

///////////////////////////////////////////////////////////////

int main() {

   string quote, book;

   int page;

   

   cout<<"What is your favorite quote from a book?"<<endl;

   getline(cin, quote);

   cout<<endl;

   /////////////////////////////////////////////

   cout<<"What book was that quote from?"<<endl;

   getline(cin, book);

   cout<<endl;

   /////////////////////////////////////////////

   cout<<"What page was that quote from?"<<endl;

   cin>>page;

   cout<<endl;

   /////////////////////////////////////////////

   int no_of_upper_characters = 0;

   for (int i=0; i<quote.length(); i++) {

       if (isupper(quote[i]))

          no_of_upper_characters++;

   }

   

   cout<<"No. of upper case characters: "<<no_of_upper_characters<<endl;

   /////////////////////////////////////////////

   int no_of_characters = quote.length();

   cout<<"No. of characters: "<<no_of_characters<<endl;

   /////////////////////////////////////////////

   bool isDog = false;

   for (int i=0; i<quote.length(); i++) {

       if (isDog == true)

           break;

       else if (quote[i] == 'd') {

           for (int j=i+1; j<quote.length(); j++) {

               if (isDog == true)

                   break;

               else if (quote[j] == 'o') {

                   for (int z=j+1; z<quote.length(); z++) {

                       if (quote[z] == 'g') {

                           isDog = true;

                           break;

                       }

                   }

               }

           }

       }

   }

   

   if (isDog == true)

       cout<<"This includes 'd' 'o' 'g' in the quote";

   //////////////////////////////////////////////

   return 0;

}

3 0
3 years ago
A 3-ft-diameter vertical cylindrical tank open to the atmosphere contains 1-ft-high water. The tank is now rotated about the cen
arlik [135]

Answer:

The angular velocity is 7.56 rad/s

the maximum water height is 2 ft

Explanation:

The z-position as a function of r is equal to

z_{s(r)} =h_{0} -\frac{w^{2}(R^{2}-2r^{2}   }{4g} (eq. 1)

where

h0 = initial height = 1 ft

w = angular velocity

R = radius of the cylinder = 1.5 ft

zs(r) = 0 when the free surface is lowest at the centre

Replacing and clearing w

w=\sqrt{\frac{4gh_{0} }{R^{2} } } =\sqrt{\frac{4*32.17*1}{1.5^{2} } } =7.56rad/s

if you consider the equation 1 for the free surface at the edge is equal to

z_{s(R)} =h_{0} +\frac{w^{2}R^{2}   }{4g} =1+\frac{(7.56^{2})*(1.5^{2} ) }{4*32.17} =1.99ft=2ft

7 0
3 years ago
Write an application that solicits and inputs three integers from the user and then displays the sum, average, product, smallest
Ganezh [65]

Answer:

3423=6^H

Explanation:

6 0
3 years ago
Two vehicles arrive at an uncontrolled intersection from different streets at the same time 1.The driver on the right must yield
ss7ja [257]
3. Both vehicles must stop
4 0
3 years ago
Other questions:
  • Ammonia gas is diffusing at a constant rate through a layer of stagnant air 1 mm thick. Conditions are such that the gas contain
    14·1 answer
  • Which of the following is the correct definition of mechanical energy?
    9·2 answers
  • One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu
    11·1 answer
  • Select the correct answer.
    15·2 answers
  • Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm
    12·2 answers
  • Component(s) that only allow(s) electrons to flow in one direction. Mark all that apply
    15·1 answer
  • Assignment # 2
    5·1 answer
  • For RTK to work, what do we need besides two or more receivers collecting data from a sufficient number of satellites simultaneo
    11·1 answer
  • Jack has been concerned about the rapidly changing green regulations in his state and his ability as a mechanical engineer to ke
    13·1 answer
  • 2) What kinds of food can you eat in space?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!