Answer:
26 lbf
Explanation:
The mass of the satellite is the same regardless of where it is.
The weight however, depends on the acceleration of gravity.
The universal gravitation equation:
g = G * M / d^2
Where
G: universal gravitation constant (6.67*10^-11 m^3/(kg*s))
M: mass of the body causing the gravitational field (mass of Earth = 6*10^24 kg)
d: distance to that body
15000 miles = 24140 km
The distance is to the center of Earth.
Earth radius = 6371 km
Then:
d = 24140 + 6371 = 30511 km
g = 6.67*10^-11 * 6*10^24 / 30511000^2 = 0.43 m/s^2
Then we calculate the weight:
w = m * a
w = 270 * 0.43 = 116 N
116 N is 26 lbf
The load is 17156 N.
<u>Explanation:</u>
First compute the flexural strength from:
σ = FL / π
= 3000
(40
10^-3) / π (5
10^-3)^3
σ = 305
10^6 N / m^2.
We can now determine the load using:
F = 2σd^3 / 3L
= 2(305
10^6) (15
10^-3)^3 / 3(40
10^-3)
F = 17156 N.
Answer:
blah blah blah sh ut up read learn
Answer:
hello im new trying to get points
Explanation:
Answer:
Fracture.
Explanation:
Fracture describes how a mineral looks when it breaks apart in an irregular way.