Answer:
P = 4.745 kips
Explanation:
Given
ΔL = 0.01 in
E = 29000 KSI
D = 1/2 in
LAB = LAC = L = 12 in
We get the area as follows
A = π*D²/4 = π*(1/2 in)²/4 = (π/16) in²
Then we use the formula
ΔL = P*L/(A*E)
For AB:
ΔL(AB) = PAB*L/(A*E) = PAB*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AB) = (2.107*10⁻⁶ in/lbf)*PAB
For AC:
ΔL(AC) = PAC*L/(A*E) = PAC*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AC) = (2.107*10⁻⁶ in/lbf)*PAC
Now, we use the condition
ΔL = ΔL(AB)ₓ + ΔL(AC)ₓ = ΔL(AB)*Cos 30° + ΔL(AC)*Cos 30° = 0.01 in
⇒ ΔL = (2.107*10⁻⁶ in/lbf)*PAB*Cos 30°+(2.107*10⁻⁶ in/lbf)*PAC*Cos 30°= 0.01 in
Knowing that PAB*Cos 30°+PAC*Cos 30° = P
we have
(2.107*10⁻⁶ in/lbf)*P = 0.01 in
⇒ P = 4745.11 lb = 4.745 kips
The pic shown can help to understand the question.
Answer:
The answer is "
"
Explanation:
Air flowing into the
Flow rate of the mass 
inlet temperature 
Pipeline
Its air is modelled as an ideal gas Apply the ideum gas rule to the air to calcule the basic volume v:




Answer:
You can look it up
Explanation: if you don't know what it is look it up on .