Answer:
The answer would be 1.5 kJ.
Explanation:
When you use the equation q = m x c x ∆T you will be able to find the energy gained or lost. The data for the water in this case is just there to distract you so ignore it. :D
Answer:
<h3>2Al+ Fe2O3 gives 2Fe + Al2O3. The given reaction is a redox reaction. As oxidation and reduction are taking place simultaneously.</h3>
Explanation:
like this...Identify oxidation and reduction with their agents:
<h3>•2Al+ Fe2O3 →2Fe + Al2O3</h3>
<h3>•Fe2O3 is reduced to Fe whereas Al is oxidized to Al2O3</h3>
<h3>In the above reaction:</h3>
<h3>Oxidizing agent:Fe2O3</h3>
<h3>Reducing agent:Al</h3>
I hope it's help you (◠‿・)—☆
Answer:
2p
Explanation:
it has 3 dumbell shapes, hence p
you can't determine the principal quantum number by looking at the shape, however bigger or spread orbital means higher value of n
Hank's Garage has an air compressor with a holding tank that contains 200L of compressed air at 5200 torr. One day a hose ruptured and all the compressed air was released to a volume of 1370 L at atmospheric pressure.
Hank's Garage has an air compressor with a holding tank that contains a volume of 200L (V₁) of compressed air at a pressure of 5200 torr (P₁).
One day a hose ruptured and all the compressed air was released. The final pressure was the atmospheric pressure (1 atm = 760 torr) (P₂).
We can calculate the new volume (V₂) in these conditions using Boyle's law, which states there is an inverse relationship between the volume and the pressure of an ideal gas.

Hank's Garage has an air compressor with a holding tank that contains 200L of compressed air at 5200 torr. One day a hose ruptured and all the compressed air was released to a volume of 1370 L at atmospheric pressure.
Learn more: brainly.com/question/1437490
Answer:
carry blood away from the heart