To answer this problem, we write first the stoichiometric equation. Thus we have,
Cu2S + O2 => 2Cu + SO2
Next, we check if the equation is balanced or not.
(left) (right)
2 Cu = 2 Cu
1 S = 1 S
2 O = 2 O
So the stoichiometric equation is balanced, let's proceed in solving the theoretical yield of Cu given 5 g of Cu2S.
First, we solve for Cu2S in moles,
5 g Cu2S x <u>1 mol Cu2S </u> = 0.0314 mol Cu2S
159.16 g Cu2s
Secondly, convert moles of Cu2S to moles Cu. Note for every mole of Cu2S we get 2 moles of Cu. Thus,
0.0314 mo Cu2S x <u> 2 mol Cu </u> = 0.0628 mole Cu<u>
</u> 1 mol Cu2S
Lastly, we convert mole Cu to g Cu via multiplying by Cu's MW.
0.0628 mole Cu x <u>63.546 g Cu </u> = 3.99 g Cu or 4 g Cu<u>
</u> 1 mole Cu
<em>ANSWER: 4 g Cu</em>
<h3><u>Answer;</u></h3>
C) primary cell wall → plasma membrane → cytoplasm → vacuole
<h3><u>Explanation;</u></h3>
- The cell wall is the protective outer layer of a plant cell, that gives the cell strength and structure, and also filters molecules that pass in and out of the cell.
- Cell membrane acts as a semi-permeable barrier separating the inside of the cell from the outside of the cell. The membrane allows regulation of what enters/exits the cell and how quickly.
- Cytoplasm is the jelly-like fluid that fills a cell. It is responsible for giving a cell its shape and also helps to fill out the cell and keeps organelles in their place.
- Vacuoles are membrane-bound sacs within the cytoplasm of a cell that function in several different ways. They functional in providing structural support, as well as serving functions such as storage, waste disposal, protection, and growth.
- <u>Potassium ion from the extracellular environment will move to the cell vacuole via the cell wall, the cell membrane and then via the cytoplasm to the vacuole.</u>
Its a. <span>an oceanic-continental convergent boundary</span>
Answer:
ΔH = ΔH₁ + ΔH₂ - ΔH₃
Explanation:
Given that:
1. A → 2B
2. B → C + D
3. E → 2D
Assuming from the corresponding ΔH for process 1, 2 and 3 are ΔH₁, ΔH₂, ΔH₃ respectively.
To estimate the ΔH for the process A → 2C + E
We multiply 2 with equation 2 where (B → C + D)
2B → 2C + 2D ⇒ 2ΔH₂
Also, let's switch equation (3), such that we have,
2D → E -ΔH₃
The summation of all the equation result into :
A → 2C + E
where; ΔH = ΔH₁ + ΔH₂ - ΔH₃
Empirical formula is the simplest ratio of components making up the compound. the molecular formula is the actual ratio of components making up the compound.
the empirical formula is CH₂. We can find the mass of CH₂ one empirical unit and have to then find the number of empirical units in the molecular formula.
Mass of one empirical unit - CH₂ - 12 g/mol x 1 + 1 g/mol x 2 = 12 = 14 g
Molar mass of the compound is - 252 .5 g/mol
number of empirical units = molar mass / mass of empirical unit
= 
= 18 units
Therefore molecular formula is - 18 times the empirical formula
molecular formula - CH₂ x 18 = C₁₈H₃₆
molecular formula is C₁₈H₃₆