Answer:

Given:
Mass of the polar bear (m) = 6.8 kg
Speed of the polar bear (v) = 5.0 m/s
To Find:
Kinetic energy of the polar bear (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:





Kinetic energy of the polar bear (KE) = 23002.1 J
Answer: <span>D. A bimetallic strip bends so that the steel is on the outside curve
</span>
When something has an increased temperature, its volume will expand. Then, if the temperature drops, its volume should be smaller. From there option A and B are out since the liquid in thermometer is expand or move up.
When you put two kinds of different metal with a different coefficient of thermal expansion, the outer curve metal will be the one with lesser coefficient when temperature drop. Since the question about drop in temperature then the metal should be bend
Brass will expand 1.5 times more than the steel so the outer curve would be the steel.
Answer:
a) αA = 4.35 rad/s²
αB = 1.84 rad/s²
b) t = 3.7 rad/s²
Explanation:
Given:
wA₀ = 240 rpm = 8π rad/s
wA₁ = 8π -αA*t₁
The angle in B is:



The velocity at the contact point is equal to:


Matching both expressions:

b) The time during which the disks slip is:

a) The angular acceleration of each disk is


Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:
