Answer:
Explanation:
Surface charge density, σ = 9 μC/m² = 9 x 10^-6 C/m²
According to the Gauss theorem,
Electric field due to the sheet is given by


E = 5.08 x 10^5 N/C
Answer:
<em> The planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S.I Unit of acceleration is m/s². Acceleration is a vector quantity because it can be represented both in magnitude and in direction.
Acceleration can be represented mathematically as
a = v/t.................................... Equation 1
Where a = acceleration, v = velocity, t= time.
<em>Given: v = 115 m/s, t = 13.0 s</em>
<em>Substituting these values into equation 1</em>
<em>a = 115/13</em>
<em>a = 8.846 m/s² moving east</em>
<em>Thus the planes average acceleration in magnitude and direction = 8.846 m/s² moving east</em>
Evaporation (or another word to use is water vapor.)
Answer:
naol may pinoy dito nag jakoI
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams