Answer:
Potential energy is 
Explanation:
The potential energy depends on the mass, the acceleration of gravity g and the height at which the object or person is.
Potential energy 
In this case we would need to know the exact mass of the hiker in order to calculate the potential energy.
But we know the values of g and h


So, the potential energy

m is the mass of the hiker, wich is not in the description of the problem.
The answer is false , because they move without an electromagnetic
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
I’m pretty sure it is an object with a net force of zero. All forces are balanced and EQUAL
Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J