If an equation is dimensionally correct, it does not mean that the equation must be true. On the other hand, when the equation is dimensionally correct, the equation cannot be true. Dimensional analysis is a technique used to check whether a relationship is correct
 
        
             
        
        
        
You are LOVED and a Child of JESUS come back he has open arms God bless
        
             
        
        
        
Answer:
emf will also be 10 times less as compared to when it has fallen 
Explanation:
We know, from faraday's law-

and 
So, as the height increases the velocity with which it will cross the ring will also increase. 
Given


Now, from 

From equation a and b we see that velocity when dropped from  is 10 times greater when height is 40
 is 10 times greater when height is 40  so, emf will also be 10 times less as compared to when it has fallen
 so, emf will also be 10 times less as compared to when it has fallen 
 
        
             
        
        
        
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path. 
that's what I know so far
 
        
             
        
        
        
The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
 
                  C = (1038 mi/h)(24 h/1 day)
                   C = 24,912 miles
From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice.