Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
Answer:
Given:
m=1000kg
u= 16.7m/s
v=0m/s
F=8000N
Required:
s=?
Solution:
F=m × a
8000N=1000kg × a
a=8m/s^2
Since it decelerate a= -8m/s^2
v^2 = u^2 + 2as
s=v^2 - u^2 / 2a
s= 0 - (16.7m/s)^2 / 2 × -8m/s^2
s= -278.89/-16
s= 17.43m
The car travels approximately 17.43m before it stops
Please like and follow me
Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
Light travels as transverse waves and faster than sound. It can be reflected, refracted and dispersed. Ray diagrams show what happens to light in mirrors and lenses. Eyes and cameras detect light.
Answer:
Cosmic ray's frame of reference: 99,875 years
Stationary frame of reference: 501,891 years
Explanation:
First of all, we convert the distance from parsec into metres:

The speed of the cosmic ray is

where
is the speed of light. Substituting,

And so, the time taken to complete the journey in the cosmic's ray frame of reference (called proper time) is:

Converting into years,

Instead, the time elapsed in the stationary frame of reference is given by Lorentz transformation:

And substituting v = 0.98c, we find:
