Answer:
the internal resistance of the cell is 0.1 ohm.
Explanation:
Given;
p.d at the terminals of a battery at no load, E₁ = 25 V
p.d at the terminals of a battery at a load, E₂ = 24 V
current through the circuit, I = 10 A
The potential drop across the circuit, V = E₁ - E₂
= 25 V - 24 V
= 1 V
The internal resistance of the cell is calculated as follows;
r = V/I
r = 1 / 10
r = 0.1 ohm
Therefore, the internal resistance of the cell is 0.1 ohm.
Answer:
Here's the equation for net force: F = ma. The work done on the plane, which becomes its kinetic energy, equals the following: Net force F equals mass times acceleration. Assume that you're pushing in the same direction that the plane is going; in this case, cos 0 degrees = 1, so.
Explanation:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes
Hope this help also looking it up helps ;)
Answer:
Torque = –207.4 Nm
Explanation:
Given M = 3.2kg, r = 5.4m, α = –12rad/s² (it is slowing down)
Torque = I × α
α = angular acceleration
I = moment of inertia
I = MR² for a circular hoop
Torque = 3.2×5.4×(– 12)
Torque = –207.4 Nm
Answer:
20.The first factor is the amount of charge on each object. The greater the charge, the greater the electric force. The second factor is the distance between the charges. The closer together the charges are, the greater the electric force is
Explanation:
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:
