Yea it’s called the Saffir-Simpson Hurricane scale, made in 1960s and further developed in 1970s
This next statement is a big deal. It should be up on a board, surrounded
by flashing red and yellow lights, and hung on the wall of every Science
classroom. Although we never see it in our daily lives, it's fundamental to
the workings of the universe, and it's also Newton's first law of motion:
<em>Without friction, it doesn't take <u>ANY</u> force to keep a moving object
moving. </em><em>Force is only required to <u>change</u> the object's speed, or to
<u>change</u> the direction </em><em>in which it's moving.</em>
The answer to the question is: On a level road, and neglecting any friction,
the engine doesn't have to supply ANY force to keep the car going at the
same speed.
Answer:
17.5 m/s²
1.90476 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Force

Initial acceleration of the rocket is 17.5 m/s²

Time taken by the rocket to reach 120 km/h is 1.90476 seconds
Change in the velocity of a rocket is given by the Tsiolkovsky rocket equation

where,
= Initial mass of rocket with fuel
= Final mass of rocket without fuel
= Exhaust gas velocity
Hence, the change in velocity increases as the mass decreases which changes the acceleration
Answer:
Drug abuse is best defined as the nonmedical or improper use of a drug that can interfere with a healthy life.
For example, a person that is addicted to cocaine will use it everyday, and will develope agressive behavior, anxiety, sleep disorder, paranoia etc.
This person could get addicted at the point of comiting a robbery, killing and much more.
Answer:
Acceleration: -9.8 m/s^2
Velocity: -28.2 m/s
Displacement: 143.1 m
Explanation:
The acceleration of gravity for any object close to earth is approximately -9.8 m/s^2.
Now, to find the velocity after 9 seconds, we can use a kinematics formula, where x is the final velocity:
<em>Final Velocity = Initial Velocity + Acceleration * Time</em>
x = 60 + -9.8*9
x = 60 - 88.2
x = -28.2
The velocity is -28.2 m/s.
Lastly, to find the displacement, we can use another kinematics formula, where y is the displacement:
<em>Displacement = (Final Velocity + Initial Velocity)/2 * Time</em>
y = (-28.2 + 60)/2 * 9
y = 143.1
The displacement is 143.1 meters.