Answer:
Ba(OH)2(aq)+H2SO4(aq) gives us 2BaH+H2O
Explanation:
Answer:
No, it is not feasible because the Gibbs free energy change is positive
Explanation:
∆Hreaction= (-602 KJ/mol) - (-348 KJ/mol) = -254 KJ/mol
∆Sreaction = (42 + 27) J/Kmol - (33 + 44) J/K = -8J/Kmol
From;
∆G = ∆H - T∆S
∆G = 254 × 10^3 J/mol - [340K × (-8 J/Kmol)]
∆G = 2.57 × 10^5 J/mol
Note that when the change in free energy is positive, a reaction is non spontaneous. Only a reaction that has a negative change in free energy is spontaneous.
I think sand is just glass and other stuff
For the reaction 2 K + F2 --> 2 KF,
consider K atomic wt. = 39
23.5 g of K = 0.603 moles, hence following the molar ratio of the balanced equation, 0.603 moles of potassium will use 0.3015 moles of F2. (number of moles, n = 0.3015)
Now, following the ideal gas equation, PV = nRT
P = 0.98 atm
V = unknown
n = 0.3015 moles
R = 82.057 cm^3 atm K^-1mole^-1 (unit of R chosen to match the units of other parameters; see the reference below)
T = 298 K
Solving for V,
V = (nRT)/P = (0.3015 mol * 82.057 cm^3 atm K^-1 mol^-1 * 298 K)/(0.98 atm)
<span>
solve it to get 7517.6 cm^3 as the volume of F2 = 7.5176 liters of F2 gas is needed. </span>
Using Daltons Law which states that the total pressure of a gas mixture is the sum of the gasses partial pressure.Thus,
Pt(total pressure)= P1+P2+P3
where
Pt= 0.90 atm
P1= 0.26 atm
P2 = 0.28 atm
P3 = ?
substitute the formula with known variables
P3= 0.90 atm-(0.26atm+0.28atm)
P3 = 0.36 atm
The partial pressure of ammonia is 0.36 atm