Answer:
B. They oxidize hydrocarbons to form less toxic gases.
Explanation:
A catalytic converter can be defined as an anti-pollution device containing a catalyst like platinum-iridium, installed in the exhaust chamber of an automobile so as to chemically convert harmful (poisonous) pollutants such as unburned hydrocarbons and carbon monoxide (CO), sulfur dioxide (S02), nitrogen oxide (NO) etc., into less harmful, poisonous or toxic chemical compounds.
This ultimately implies that, catalytic converters are typically used for converting harmful gases into less harmful, poisonous or toxic gases and molecules e.g carbon dioxide (C02) and water (H2O). This helps to prevent global warming, enhance the conservation of natural resources, as well as preserve the lives of living organisms and their natural habitat.
<em>Hence, the statement which best describes the use of catalytic converters in automobiles is that they oxidize hydrocarbons to form less toxic gases.</em>
The chemical equation without coefficients is:
Ca + CO2 + O2 --------> Ca CO3
You can balance that equation by trial an error.
This is the chemical equation balanced:
2Ca + 2CO2 + O2 --------> 2Ca CO3
Count the atoms on each side to check the balance
Atom Left side right side
Ca 2 2
C 2 2
O 2*2 + 2 = 6 2*3 = 6
Then those are the coefficients:
a0 = 2
a1 = 2
a2 = 1
a3 = 2
Answer:
<em>The solution with the lowest pH is 0.1 M HCl.</em>
Explanation:
Since the three solutions have the same concentration (0,1M) it is only necessary to look at the pKa of each solution.
Also, knowing that a higher pKa means a lower Ka, because pKa = -Log (Ka). Thus, a lower Ka means a lower concentration of protons with a higher pH ( pH = -Log [H+].
The HCl doesn't have a pKa because is a strong acid that dissociates completely. Therefore, this solution produces a lower pH. Looking at the pKa of acetic acid and formic acid solutions, the second with the lowest pH is the formic acid solutions and the higher pH is for the acetic acid solution.
The dry ice absorbs heat from the air in the flask and become CO2 gas directly. So the heat flow from air to dry ice. And the CO2 gas increase the amount of the air. Though the temperature decreases, the balloon still inflates.
Answer:
Mass = 824.57 g
Explanation:
Given data:
Mass of bromine = ?
Number of moles of bromine = 5.16 mol
Solution:
Formula:
Mass = number of moles × molar mass
Molar mass of bromine = 159.8 g/mol
by putting values,
Mass = 5.16 mol × 159.8 g/mol
Mass = 824.57 g