It is a true fact that ionic crystals are excellent insulators and can hold a large amount of heat before melting or boiling. The correct option among the two options that are given in the question is the first option. Salt is a great example of ionic crystals and we know that it takes a huge amount of time to melt or boil.
The piece of unknown metal is in thermal equilibrium with water such that Q of metal is equal to Q of the water. We write this equality as follows:
-Qm = Qw
Mass of metal (Cm)(ΔT) = Mass of water (Cw) (ΔT)
where C is the specific heat capacities of the materials.
We calculate as follows:
-(Mass of metal (Cm)(ΔT)) = Mass of water (Cw) (ΔT)
-68.6 (Cm)(52.1 - 100) = 42 (4.184) (52.1 - 20)
Cm = 1.717 -----> OPTION C
To measure weight of a item
Cooler water molecules are denser than warm water and will not allow much of the salt to dissolve
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V