Answer: The early atmosphere
Explanation: Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence. The early atmosphere was probably mostly carbon dioxide, with little or no oxygen.
Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:

If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:

Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.

Regards.
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
Answer:
A.)
Explanation:
A change in state may seem like a chemical reaction, but it is actually a physical change. "A change in state" is basically saying that the appearance of whatever the item is, is taking a change physically. Whether this item was going through some examples of a physical change, which would be:
<em>melting (solid to liquid), evaporation (liquid to gas), condensation (gas to liquid), freezing (liquid to solid), deposition (gas to solid), and sublimation (solid to gas).</em>
A change in color, odor, taste, chemical compound, and temperature all represent a chemical reaction, because these are all things that are happening within the the item that is being given the product of a chemical change.
Think of it this way: <em>internal changes within the product: chemical. External changes within the product: physical.</em>
I hope this helps.