I would say Na. Oxygen has 2 valence electrons and when reacting with other molecules, the ones with the fullest or emptiest shells will react the least. Both H2 and Na are in the Alkali Metals in the first row, but since H2 has 2 molecules, it would use more oxygen than Ana
Gamma rays have the highest penetrating power so it can only be stopped by thick layers of dense metal. :)
Answer : The molar mass of unknown substance is, 39.7 g/mol
Explanation : Given,
Mass of unknown substance = 9.56 g
Volume of solution = 100.0 mL
Molarity = 2.41 M
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the molar mass of unknown substance is, 39.7 g/mol
The different types of motion