Answer:
In an ionic bonds, the metal loses electrons to become a positively charged cation, In which the nonmetal accepts those electrons to become a negatively charged anion.
Explanation:
The answer is surface tension
Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
Answer:
ΔE = 73 J
Explanation:
By the first law of thermodynamics, the energy in the system must conserved:
ΔE = Q - W
Where ΔE is the internal energy, Q is the heat flow (positive if it's absorbed by the system, and negative if the system loses heat), and W is the work (positive if the system is expanding, and negative if the system is compressing).
So, Q = + 551 J, and W = + 478 J
ΔE = 551 - 478
ΔE = 73 J
Answer:
The volume of an irregularly shaped solid can be determined from the volume of water it displaces. A graduated cylinder contains 19.9 mL of water. When a small piece of galena is added, it sinks and the volume increases to 24.5 mL