Answer:
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Explanation:
In this exercise you are asked to observe the change in velocity in a projectile launch.
If we assume that the friction force is small, the velocity in the x-axis must be constant
vₓ = v₀ₓ
Therefore, the arrow (red) that represents this movement must not change in magnitude.
In the direction of the y axis, the acceleration of gravity is acting, so the magnitude of the velocity in this axis changes
v_y = v_{oy} - g t
where the upward direction is positive, so the arrow represents this speed (blue) must decrease, reach zero and grow in a negative direction as time progresses
Answer:
F= 0.009 N
Explanation:
Given that
Charge ,q= 5.13 μC
Velocity ,V= 8.64 x 10⁶ m/s
Magnetic field , B = 1.99 x 10⁻⁴ T
The force on a charge q moving with velocity v is given as follows
F= q V B
Now by putting the values in the above equation we get
[tex]F= 5.13\times 10^{-6}\times 8.64\times 10^{6}\times 1.99\times 10^{-4}\ N [\tex]
F=0.00882 N
F= 0.009 N
Therefore the force on the particle will be 0.009 N.
Nearly 14 billion years, according to astronomers. Happy to help!