1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
3 years ago
10

9. If the musician hit the drum on a stage, how would the sound wave behave differently if he hit it the drum if the drum were s

ubmerged in a swimming pool? You may use pictures to help with your explanation. Be very thorough with your answer! If you use any sources other than your brain to help you with this question, be sure to list them!
Physics
1 answer:
egoroff_w [7]3 years ago
4 0
I think it would be yes because the drum is submerged in water and the water would slow the sound waves, making the sound softer. Right?
You might be interested in
Which factors affect gravitational potential force but not elastic potential energy
Inga [223]

Answer:

The mass of the object involved and the value of the gravitational acceleration

Explanation:

- Gravitational potential energy is defined as the energy possessed by an object in a gravitational field due to its position with respect to the ground:

U=mgh

where m is the mass of the object, g is the gravitational acceleration and h is the heigth of the object with respect to the ground.

- Elastic potential energy is defined as the energy possessed by an elastic object and it is given as:

U=\frac{1}{2}kx^2

where k is the spring constant of the elastic object, while x is the compression/stretching of the spring with respect to the equilibrium position.

As we can see from the equations, both types of energy depends on the relative position of the object/end of the spring with respect to a certain reference position (h in the first formula, x in the second formula), but gravitational potential energy also depends on m (the mass) and g (the gravitational acceleration) while the elastic energy does not.

3 0
3 years ago
Read 2 more answers
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
For a moving object, the force acting on the object varies directly with the object's acceleration. When a force of 81 N acts on
tensa zangetsu [6.8K]

Answer:

18 N

Explanation:

You have to do:

81 N: 9 ms2= x: 2 ms2

6 0
3 years ago
A man pushes his child in a grocery cart. The total mass of the cart and child is 30.0 kg. If the force of friction on the cart
Ber [7]
Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:
\sum F = ma
where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.

We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force F_f acting in the opposite direction. So Newton's second law can be rewritten as
F-F_a = ma
or
F=ma + F_f

since the frictional force is 15 N and we want to achieve an acceleration of a=1.50 m/s^2, we can substitute these values to find what is the force the man needs:
F=(30 kg)(1.5 m/s^2)+15 N=60 N
8 0
3 years ago
A circular loop of wire with a radius of 20 cm lies in the xy plane and carries a current of 2 A, counterclockwise when viewed f
Zina [86]

To solve this problem we will apply the concept related to the magnetic dipole moment that is defined as the product between the current and the object area. In our case we have the radius so we will get the area, which would be

A=\pi r^2

A =\pi (0.2)^2

A =0.1256 m^2

Once the area is obtained, it is possible to calculate the magnetic dipole moment considering the previously given definition:

\mu=IA

\mu=2(0.1256)

\mu=0.25 A\cdot m^2

Therefore the magnetic dipole moment is 0.25A\cdot m^2

6 0
3 years ago
Other questions:
  • What was the average speed in km/h of a car that travels 400.0 km in 4.5 h?
    9·1 answer
  • Two Forces are exerted on an Object In a Vertical Direction: A 20N force downwards, and 10 N force upwards. The mass of the obje
    11·1 answer
  • What happens to the mass of a metal ball if its heated?
    12·2 answers
  • A rod of length L is hinged at one end. The moment of inertia as the rod rotates around that hinge is ML2/3. Suppose a 2.50 m ro
    13·1 answer
  • People have proposed driving motors with the earth's magnetic field. This is possible in principle, but the small field means th
    8·1 answer
  • Which statement best describes the process that takes place in these nodules?
    14·2 answers
  • B. A car is moving 4.0 m/s to the right. The car begins to accelerate at a rate of 1.5 m/s/s, to the right. After
    10·1 answer
  • An astronaut has a mass of 150 kg on earth. what would be the mass of the astronaut on the moon.
    15·1 answer
  • Is the intensity of light directly or inversely proportional to the concentration according to Beer-lambert's law?
    12·1 answer
  • When a beam of charged particles moves through a magnetic field, what is the evidence that particles in the beam have momentum g
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!