Answer:
energy is used to break bonds in reactants and energy is released when new bonds form in products.The law of conservation of energy states that matter cannot be created or destroyed. Whether a chemical reaction absorbs or releases energy there is no overall change in the amount of energy during the reaction.
Explanation:
Sorry if im wrong
The definition for "What do you call two or more atoms bonded together" is a compound. Think of water. Water is called H20. Water is made of 2 hydrogen atoms and 1 oxygen atom. That is to atoms bonded together to make a compound which is water. Hope I helped
Answer:
Diluted concentration is 0.5M
Explanation:
Let's solve this with rules of three, although there is a formula to see it easier
In 1000 mL (1L), we have 2 moles of NaOH
In 250 mL we must have (250 . 2) / 1000 = 0.5 moles of NaOH
These moles will be also in 1 L of the final volume of the diluted solution
More easy:
1 L of solution has 0.5 moles of NaOH
Then, molarity is 0.5 M
The formula is: Concentrated M . Conc. volume = Diluted M . Diluted volume
2 M . 0.250L = 1L . Diluted M
0.5M = Diluted M
The isotope is identified as 58 Fe²⁺, where 58 is the mass number of the isotope.
Explanation:
In this problem, there is difference in the number of protons and electrons, but the electron number should not vary in a stable isotope. As isotopes are meant to have difference in number of neutrons leading to change in the mass number. So this means, in the present case the isotope is in oxidized state as the number of electrons is less than the number of protons. This indicates that the isotope is in +2 oxidation state, since the difference in the number of protons and electrons is 2.
Then as an isotope will be formed by varying in the number of neutrons for the elements in periodic table. So from the number of protons we can confirm the atomic number of the element. As the atomic number is given as number of protons in case of oxidized element, the atomic number of 26 in the present case will be related to Fe element in the periodic table.
Hence the isotope will be Fe in +2 oxidation state and having the atomic number as 26 and mass number as 26+32 = 58. So there is a change in the mass number of the isotope of Fe from 56 to 58.
Thus, the isotope is identified as 58 Fe²⁺, where 58 is the mass number of the isotope.
I would love to help but it is 3 or is it 3 million?