1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
3 years ago
10

Can someone help me with this? I will give brainliest! Ridiculous answers will be reported. Thank you.

Physics
1 answer:
PilotLPTM [1.2K]3 years ago
4 0
Can you post a more clear picture because It’s a little blurry
You might be interested in
The modernization of tennis occurred in which<br> country?
Kobotan [32]

Answer:

The International Lawn Tennis Federation, now known simply as the International Tennis Federation, the sport's governing body, was founded in 1913, composed of 13 national tennis associations. The Modern Olympics , growing out of the ancient tradition, resurfaced under the direction of the International Olympic Committee in Athens in 1896.

Explanation:

8 0
3 years ago
A 10-g bullet moving horizontally with a speed of 2.0 km/s strikes and passes through a 4.0-kg block moving with a speed of 4.2
SVEN [57.7K]

Answer:

K=512J

Explanation:

Since the surface is frictionless, momentum will be conserved. If the bullet of mass m_1 has an initial velocity v_{1i} and a final velocity v_{1f} and the block of mass m_2 has an initial velocity v_{2i} and a final velocity v_{2f} then the initial and final momentum of the system will be:

p_i=m_1v_{1i}+m_2v_{2i}

p_f=m_1v_{1f}+m_2v_{2f}

Since momentum is conserved, p_i=p_f, which means:

m_1v_{1i}+m_2v_{2i}=m_1v_{1f}+m_2v_{2f}

We know that the block is brought to rest by the collision, which means v_{2f}=0m/s and leaves us with:

m_1v_{1i}+m_2v_{2i}=m_1v_{1f}

which is the same as:

v_{1f}=\frac{m_1v_{1i}+m_2v_{2i}}{m_1}

Considering the direction the bullet moves initially as the positive one, and writing in S.I., this gives us:

v_{1f}=\frac{(0.01kg)(2000m/s)+(4kg)(-4.2m/s)}{0.01kg}=320m/s

So kinetic energy of the bullet as it emerges from the block will be:

K=\frac{mv^2}{2}=\frac{(0.01kg)(320m/s)^2}{2}=512J

6 0
4 years ago
5. Confirm dimensionally that the product (lvp/n) is
Sidana [21]

Answer:

How do you do it?

Explanation:

7 0
3 years ago
Suppose that a particular artillery piece has a range R = 9880 yards . Find its range in miles. Use the facts that 1mile=5280ft
Solnce55 [7]

Answer:

R = 9880 yd * 3 ft/yd / 5280 ft/mi = 5.61 mi

If you do it in steps

R = 9880 yd * 3 ft/yd = 29640 ft

R = 29640 ft / 5280 ft/mi = 5.61 mi

6 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location &lt;8, -30, -4&gt; its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
Other questions:
  • Two balls have the same mass, but one has a larger volume than the other. which ball has the larger density
    8·1 answer
  • Two forces are acting on an object, 8 N to the right and 6 N down. Click on the vector diagram to show the correct net force on
    6·2 answers
  • A plastic spring with spring constant 850 N/m has a relaxed length of 0.100 m. The spring is positioned vertically on a table, a
    10·1 answer
  • Velocity can be defined as ______ in a given direction
    6·2 answers
  • Light from an argon laser strikes a diffraction grating that has 7,735 grooves per centimeter. The central and first-order princ
    9·1 answer
  • _C7H16+ _O2 produces _CO2 +H2O
    11·1 answer
  • How do you convert 15000 Fg to mass in Kg?
    5·1 answer
  • What variable affects the natural frequency of an organ pipe?
    11·2 answers
  • From a branch 35 m high, a 0.75 kg bird dives into a small fish tank containing
    7·1 answer
  • After reading the scenario, write which of the 3 ways is demonstrated and explain
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!