1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
14

An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons

tant force <220, 460, -200> N acted on the object while the object moved from location <8, -30, -4> m to location <14, -21, -7> m. Then a different single constant force <100, 260, 210> N acted on the object while the object moved from location <14, -21, -7> m to location <17, -27, -3> m. What is the speed of the object at this final location
Physics
1 answer:
Alenkasestr [34]3 years ago
5 0

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

You might be interested in
A string that passes over a pulley has a 0.341 kg mass attached to one end and a 0.625 kg mass attached to the other end. The pu
dalvyx [7]

Answer:

The frictional torque is \tau  = 0.2505 \ N \cdot m

Explanation:

From the question we are told that

   The mass attached to one end the string is m_1 =  0.341 \ kg

   The mass attached to the other end of the string is  m_2 =  0.625 \ kg

    The radius of the disk is  r = 9.00 \ cm  = 0.09 \ m

At equilibrium the tension on the string due to the first mass is mathematically represented as

      T_1 =  m_1 *  g

substituting values

      T_1 =  0.341 * 9.8

      T_1 =  3.342 \ N

At equilibrium the tension on the string due to the  mass is mathematically represented as

      T_2 =  m_2 *  g

     T_2 = 0.625 * 9.8

      T_2 = 6.125 \ N

The  frictional torque that must be exerted is mathematically represented as

      \tau  =  (T_2 * r ) - (T_1 * r )

substituting values  

     \tau  =  ( 6.125 * 0.09 ) - (3.342  * 0.09 )

     \tau  = 0.2505 \ N \cdot m

5 0
3 years ago
What happens to molecules when their kinetic energy decreases?
Illusion [34]

Answer:

The speed of molecule decreases and temperature also decreases

Explanation:

Kinetic energy of the molecules of a subsance is directly proportional to the temperature of molecule So as the kinetic energy decrease, temperature also decreases. decreses their speed.

6 0
3 years ago
At what speed do a bicycle and its rider, with a combined mass of 100 kg , have the same momentum as a 1600 kg car traveling at
noname [10]
Given:\\m_b=100kg\\m_c=1600kg\\v_c=5.2 \frac{m}{s} \\p_b=p_c\\\\Find:\\v_b=?\\\\Solution:\\\\p_b=p_c\\\\p=mv\\\\m_bv_b=m_cv_c\Rightarrow v_b= \frac{m_cv_c}{m_b} \\\\v_b= \frac{1600kg\cdot5.2 \frac{m}{s}  }{100kg} =83.2 \frac{m}{s}
3 0
3 years ago
A 2kg water balloon is flying at a rate of 4m/s^2. With what force will it hit its target?
blondinia [14]

Explanation:

F=m×a

m=2kg

a=4m/s^2

F=2kg×4m/s^2

F=8N

6 0
3 years ago
Pls help and thank u need asap!
aleksandr82 [10.1K]

Answer:

ill help if u help me?its 4am

5 0
2 years ago
Other questions:
  • A race-car drives around a circular track of radius RRR. The race-car speeds around its first lap at linear speed v_iv i ​ v, st
    15·1 answer
  • You accidentally drop a book down a stairwell. Assuming no air resistance, How fast will the book be moving after 1.1 second?
    5·2 answers
  • 1) On the way to the moon, the Apollo astro-
    9·1 answer
  • Suppose a mass of 0.500 kg falls from 3050m. What potential energy is associated with the coin when its speed is 30.0 m/s?
    9·1 answer
  • Scientists now think high-fructose corn syrup may disrupt appetite control, making people
    13·1 answer
  • Sliding friction is _ than the static friction.
    9·1 answer
  • When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
    9·1 answer
  • A merry go round at the park is spinning. You stand on the outer edge and are traveling at constant speed of 5 m/s. You walk hal
    10·1 answer
  • A ball is thrown horizontally from the top of a tower at 30m high, and lands 15m from its base. What is the ball's initial speed
    15·1 answer
  • A triangular plate with a non-uniform areal density has a mass M=0.500 kg. It is suspended by a pivot at P and can oscillate as
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!