1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
2 years ago
14

An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons

tant force <220, 460, -200> N acted on the object while the object moved from location <8, -30, -4> m to location <14, -21, -7> m. Then a different single constant force <100, 260, 210> N acted on the object while the object moved from location <14, -21, -7> m to location <17, -27, -3> m. What is the speed of the object at this final location
Physics
1 answer:
Alenkasestr [34]2 years ago
5 0

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

You might be interested in
HELP ASAP‼️<br><br> Can someone please answer this question I’m confusion❔
klemol [59]

the enclosed may help. earth rotes and you and i are fixed to it. air flows it's own path ...

3 0
3 years ago
For pea plants, T represents a dominant allele for tall pea plants and t is the recessive allele for short pea plants. If two pl
JulsSmile [24]

Answer:

75%(TT,Tt,tt) Hope that helps

4 0
2 years ago
An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the
poizon [28]

Answer:

Inverted

Real

Explanation:

u = Object distance =  30 cm

v = Image distance

f = Focal length = 10 cm

Lens Equation

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{30}\\\Rightarrow \frac{1}{v}=\frac{1}{15}\\\Rightarrow v=15\ cm

As, the image distance is positive the image is real and forms on the other side of the lens

m=-\frac{v}{u}\\\Rightarrow m=-\frac{-15}{30}\\\Rightarrow m=-0.5

As, the magnification is negative the image is inverted

3 0
2 years ago
Suppose you are hiking along a trail. Make a comparison between the magnitude of your displacement and your distance traveled. C
Savatey [412]

The magnitude of your displacement is usually less than the distance you travel.

The magnitude of your displacement can be equal to the distance you travel, if you travel in a perfectly straight line.

The magnitude of your displacement can never be greater than the distance you travel.

5 0
3 years ago
Please help me!
sergeinik [125]

C. The Densities are equal.

<h3>What is density?</h3>

Density is mass per unit volume or mass of a unit volume of a material substance.

If m1, V1 and D1 = mass, volume  and density respectively of ball C

m2, V2 and D2 = mass, volume and density respectively of ball D

According to the Question ,

V_{1} = 3V_{2}  , m_{2}  = \frac{1}{3} (m_{1} ) \\ \\= m_{1} = 3m_{2}

Therefore,

\frac{D_{1} }{D_{2} }  = (\frac{m_{1} }{V_{1} } )* (\frac{m_{2} }{V_{2} } )\\ \\= (\frac{3m_{2} }{3V_{2} })*(\frac{V_{2} }{m_{2} }) \\\\= 1

Hence, D1 = D2

Learn more about density here:brainly.com/question/15164682

#SPJ1

6 0
2 years ago
Other questions:
  • What is the final concentration of DD at equilibrium if the initial concentrations are [A][A]A_i = 1.00 MM and [B][B]B_i = 2.00
    11·1 answer
  • PLEASE ANSWER QUICK!! What happens at the condensation point?A. Molecules of a liquid heat up and begin to convert to a gaseous
    6·1 answer
  • Which word in the sentence is a helping verb Jamie could probably repair his bike by himself
    15·1 answer
  • Develop a power point presentation to which you explain how convection works by using ocean water as an example. In your present
    13·1 answer
  • A thick steel sheet of area 100 in.2 is exposed to air near the ocean. After a one-year period it was found to experience a weig
    5·1 answer
  • A rocket is continuously firing its engines as it accelerates away from Earth. For the first kilometer of its ascent, the mass o
    5·1 answer
  • The capacitor is then disconnected from the 12V battery and a dielectric with a dielectric constant of k is inserted between the
    6·1 answer
  • Can someone explain which of Newton’s Law is demonstrated in part 1 and which is demonstrated in part 2? (Picture)
    6·1 answer
  • Two boxes are at rest on a smooth, horizontal surface. The boxes are in contact with one another. If box 1 is pushed with a forc
    14·1 answer
  • Question 2 of 10
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!