1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
14

An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons

tant force <220, 460, -200> N acted on the object while the object moved from location <8, -30, -4> m to location <14, -21, -7> m. Then a different single constant force <100, 260, 210> N acted on the object while the object moved from location <14, -21, -7> m to location <17, -27, -3> m. What is the speed of the object at this final location
Physics
1 answer:
Alenkasestr [34]3 years ago
5 0

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

You might be interested in
If the moon is rising at midnight, the phase of the moon must be
Nadya [2.5K]
The phase is called 3rd quarter.

Hope this helps:)
7 0
3 years ago
Calculate the total resistance for a 650ohm , a 350 ohm , and a 1000 ohm resistor connected in series
Mekhanik [1.2K]

Answer:

2000 ohms

Explanation:

Resisters in series just add.

Rt = R1 + R2 + R3

R1 = 650 ohm

R2 = 350 ohm

R3 = 1000 ohm

Rt = 650 + 350 + 1000

Rt = 2000 ohms.

5 0
3 years ago
Read 2 more answers
The drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles
belka [17]

Answer:

F_a=5.67\times 10^{-5}\ N

<u />F_b=3.49\times 10^{-5}\ N

F_c=9.16\times 10^{-5}\ N

Explanation:

Given:

  • mass of particle A, m_a=363\ kg
  • mass of particle B, m_b=517\ kg
  • mass of particle C, m_c=154\ kg
  • All the three particles lie on a straight line.
  • Distance between particle A and B, x_{ab}=0.5\ m
  • Distance between particle B and C, x_{bc}=0.25\ m

Since the gravitational force is attractive in nature it will add up when enacted from the same direction.

<u>Force on particle A due to particles B & C:</u>

F_a=G. \frac{m_a.m_b}{x_{ab}^2} +G. \frac{m_a.m_c}{(x_{ab}+x_{bc})^2}

F_a=6.67\times 10^{-11}\times (\frac{363\times 517}{0.5^2}+\frac{363\times 154}{(0.5+0.25)^2})

F_a=5.67\times 10^{-5}\ N

<u>Force on particle C due to particles B & A:</u>

<u />F_c=G.\frac{m_c.m_b}{x_{bc}^2} +G.\frac{m_c.m_a}{(x_{ab}+x_{bc})^2}<u />

F_c=6.67\times 10^{-11}\times (\frac{154\times 517}{0.25^2}+\frac{154\times 363}{(0.25+0.5)^2} )

F_c=9.16\times 10^{-5}\ N

<u>Force on particle B due to particles C & A:</u>

<u />F_b=G.\frac{m_b.m_c}{x_{bc}^2} -G.\frac{m_b.m_a}{x_{ab}^2}<u />

<u />F_b=6.67\times 10^{-11}\times (\frac{517\times 154}{0.25^2}-\frac{517\times 363}{0.5^2}  )<u />

<u />F_b=3.49\times 10^{-5}\ N<u />

3 0
3 years ago
A foot is 1/3 of a yard. What part of a meter is a millimeter?
N76 [4]

Answer:

Explanation:

1/1000

6 0
3 years ago
Explain two scenarios where a large truck can have the same momentum as a small car.
KengaRu [80]

The momentum, p, of any object having mass m and the velocity v is

p=mv\cdots(i)

Let M_L and M_S be the masses of the large truck and the car respectively, and V_L and V_S be the velocities of the large truck and the car respectively.

So, by using equation (i),

the momentum of the large truck = M_LV_L

and the momentum of the small car = M_SV_S.

If the large truck has the same momentum as a small car, then the condition is

M_LV_L=M_SV_S\cdots(ii)

The equation (ii) can be rearranged as

\frac {M_L}{M_S}=\frac {V_S}{V_L} \; or \; \frac{M_L}{V_S}=\frac{M_S}{V_L}

So, the first scenario:

\frac {M_L}{M_S}=\frac {V_S}{V_L}

\Rhghtarrow M_L:M_S=V_S:V_L

So, to have the same momentum, the ratio of mass of truck to the mass of the car must be equal to the ratio of velocity of the car to the velocity of the truck.

The other scenario:

\frac{M_L}{V_S}=\frac{M_S}{V_L}

\Rhghtarrow M_L:V_S= M_S:V_L

So, to have the same momentum, the ratio of mass of truck to the velocity of the car must be equal to the ratio of mass of the car to the velocity of the truck.

5 0
3 years ago
Other questions:
  • 17. What is movig from the sound source to the
    5·2 answers
  • What is a continuous range of a single feature such as a wave lengt
    8·1 answer
  • If all else stays the same, which would cause an increase in the gravitational force on a space shuttle?
    12·2 answers
  • A stack of bricks weighs 170 KN (Kilo-newtons). The stack exerts 180 KPa (Kilo-pascals) of pressure on the ground. What is the a
    15·1 answer
  • Solid materials that do not possess an orderly arrangement of atoms are called
    15·1 answer
  • Which of the following do waves carry?
    15·1 answer
  • A monochromatic light passes through a narrow slit and forms a diffraction pattern on a screen behind the slit. As the slit widt
    13·1 answer
  • What causes the pressure that allows diamonds to form in the mantle?
    14·1 answer
  • PLEASE HELP THIS IS A 53 QUESTION TEST
    13·1 answer
  • The charge on the sphere is monitored as a beam of monochromatic light shines on the sphere. Initially nothing happens. The wave
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!