1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
14

An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons

tant force <220, 460, -200> N acted on the object while the object moved from location <8, -30, -4> m to location <14, -21, -7> m. Then a different single constant force <100, 260, 210> N acted on the object while the object moved from location <14, -21, -7> m to location <17, -27, -3> m. What is the speed of the object at this final location
Physics
1 answer:
Alenkasestr [34]3 years ago
5 0

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

You might be interested in
How is pure salt obtained from the sea water ?describe in brief ​
lianna [129]

Answer:

Evaporation

Explanation:

Evaporation

7 0
3 years ago
Read 2 more answers
PLEASE SOMEONE HELP ME ILL GIVE THE PERSON BRAINLIEST
katrin [286]
The correct answer is the Golden Gate Bridge
4 0
3 years ago
The deliberate radiation of electromagnetic (EM) energy to degrade or neutralize the radio frequency long-haul supervisory contr
inysia [295]

Answer:

Best explains Jamming

Explanation:

<em>The deliberate radiation of electromagnetic (EM) energy to degrade or neutralize the radio frequency long-haul supervisory control and data acquisition (SCADA) communications links, best explains what?</em>

Jamming is defined as the blocking or interference with authorized wireless communications. it's a problem  in personal area network wireless technologies. Jamming can occur inadvertently due to high levels of noise .

Jammers can send radio signals to interfere or disrupt communication flows by by decreasing the signal-to-noise ratio.They use radio frequency to interfere with communications by keeping it busy.

6 0
3 years ago
My dad gifted me a calculator. I have observed that very small cells are used in a calculator. What are these cells called and w
Morgarella [4.7K]
The cells are called insibatss, I think I spelled that right but
7 0
3 years ago
A MEMS-based accelerometer has a mass of m = 2 grams, an equivalent spring constant of k = 5 N/m, and an equivalent damping coef
pychu [463]

Answer:

The natural frequency = 50 rad/s = 7.96 Hz

Damping ratio = 0.5

Explanation:

The natural frequency is calculated in this manner

w = √(k/m)

k = spring constant = 5 N/m

m = mass = 2 g = 0.002 kg

w = √(5/0.002) = 50 rad/s

w = 2πf

50 = 2πf

f = 50/(2π) = 7.96 Hz

Damping ratio = c/[2√(mk)] = 0.1/(2 × √(5 × 0.002)) = 0.5

5 0
3 years ago
Other questions:
  • Einstein and lorentz, being avid tennis players, play a fast-paced game on a court where they stand 19.0 m from each other. bein
    7·1 answer
  • From the last problem, what is the ratio of the ppm change in CO2 to the ppm change in CH4? Assume that the concentrations of CO
    13·1 answer
  • When the mass of the bottle is 0.125 kg, the KE is______ kg m2/s2.
    12·1 answer
  • PHYSICS HW HELP PLS!! explain how you got it too thank you! :)
    5·1 answer
  • A 230 kg steel crate is being pushed along a cement floor. The force of friction is 480 N to the left and the applied force is 1
    8·2 answers
  • What are three of Earth's spheres in which energy is transferred by convection
    13·1 answer
  • A boy and his skateboard have a combined mass of 65 kg what is the speed of the boy and skateboard if they have a momentum of 27
    15·1 answer
  • A baseball has a mass of 0.15 kg. The baseball is pitched so that it is 1 meter above home plate and moving at 40 m/s. What is t
    10·1 answer
  • 2. A car with mass 2,500 kg is travelling at 15 m/s. What is the car's kinetic energy?
    12·1 answer
  • The total charge that passes through an electrolytic cell is given by the product of?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!