a. The force applied would be equal to the frictional
force.
F = us Fn
where, F = applied force = 35 N, us = coeff of static
friction, Fn = normal force = weight
35 N = us * (6 kg * 9.81 m/s^2)
us = 0.595
b. The force applied would now be the sum of the
frictional force and force due to acceleration
F = uk Fn + m a
where, uk = coeff of kinetic friction
35 N = uk * (6 kg * 9.81 m/s^2) + (6kg * 0.60 m/s^2)
uk = 0.533
Answer:
what is the image in question
Answer:
at the top
Explanation:
Potential energy is the stored energy, mechanical energy,
or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.
Answer:
The rise in height of combined block/bullet from its original position is 0.45m
Explanation:
Given;
mass of bullet, m₁ = 12 g = 0.012 kg
mass of block of wood, m₂ = 1 kg
initial speed of bullet, u₁ = 250 m/s.
initial speed of block of wood, u₂ = 0
From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.
m₁u₁ + m₂u₂ = v(m₁+m₂)
where;
v is the final speed of the combined block/bullet system.
0.012 x 250 + 0 = v (0.012 + 1)
3 = v (1.012)
v = 3/1.012
v = 2.96 m/s
From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.
¹/₂mv² = mgh
¹/₂v² = gh
¹/₂ (2.96)² = (9.8)h
4.3808 = 9.8h
h = 4.3808/9.8
h = 0.45 m
Therefore, the rise in height of combined block/bullet from its original position is 0.45m