Answer: The maximum possible speed v is √2( hν - Ф ) / m
Explanation: You could be referring to the provided explanation, despite the fact that the question isn't comprehensive. When a photon collides with the surface of any metal, it transmits all of its energy to the electron in the atom. The collision causes the electron to travel with a certain amount of kinetic energy. This is referred to as the photoelectric effect. The maximum kinetic energy is calculated using Einstein's equation for the photoelectric effect:
K.E. = hν - Ф
½ mv² = hν - Ф
Hence the maximum possible speed is:
v = √2( hν - Ф ) / m
For more information on the photoelectric effect refer to this link: brainly.com/question/25027428
#SPJ4
The position of the particle is given by:
x(t) = t³ - 12t² + 21t - 9
Differentiate x(t) with respect to t to find the velocity x'(t):
x'(t) = 3t² - 24t + 21
Differentiate x'(t) with respect to t to find the acceleration x''(t):
x''(t) = 6t - 24
Answer:
v = 1.28 m/s
Explanation:
Given that,
Maximum compression of the spring, 
Spring constant, k = 800 N/m
Mass of the block, m = 0.2 kg
To find,
The velocity of the block when it first reaches a height of 0.1 m above the ground on the ramp.
Solution,
When the block is bounced back up the ramp, the total energy of the system remains conserved. Let v is the velocity of the block such that,
Initial energy = Final energy

Substituting all the values in above equation,

v = 1.28 m/s
Therefore the velocity of block when it first reaches a height of 0.1 m above the ground on the ramp is 1.28 m/s.
The unit for power is Watts. the newton is a unit for force. joules for energy and meters for distance