The force exerted by student A with his scooter is 306 N and that of student B is 204 N.
<h3>
Force applied by each student</h3>
The force exerted by each student is calculated from Newton's second law of motion.
F = ma
where;
- m is mass
- a is acceleration
F(A) = 127.5 x 2.4
F(A) = 306 N
F(B) = 120 x 1.7
F(B) = 204 N
Thus, the force exerted by student A with his scooter is 306 N and that of student B is 204 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1
Answer: hypothesis that is not supported by the results of an experiment may lead to further research and investigations.
Answer:
the first one
Explanation:
an atoms ability to attract other electrons and form a chemical bond
Answer:
The maximum static frictional force is 40N.
Explanation:
When an object of mass M is on a surface with a coefficient of static friction μ, there is a minimum force that you need to apply to the object in order to "break" the coefficient of static friction and be able to move the object (Called the threshold of motion, once the object is moving we have a coefficient of kinetic friction, which is smaller than the one for static friction).
This coefficient defines the maximum static friction force that we can have.
So if we apply a small force and we start to increase it, the static frictional force will be equal to our force until it reaches its maximum, and then we can move the object and now we will have frictional force.
In this case, we know that we apply a force of 40N and the object just starts to move.
Then we can assume that we are just at the point of transition between static frictional force and kinetic frictional force (the threshold of motion), thus, 40 N is the maximum of the static frictional force.
The movement of a fluid during convection is a circular/oval motion since the fluid at the top sinks and the fluid at the bottom rises.
Hope this helps :)