Answer:
0.71 kg
Explanation:
L = length of the steel wire = 3.0 m
d = diameter of steel wire = 0.32 mm = 0.32 x 10⁻³ m
Area of cross-section of the steel wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (0.32 x 10⁻³)²
A = 8.04 x 10⁻⁸ m²
ΔL = change in length of the wire = 1.3 mm = 1.3 x 10⁻³ m
Y = Young's modulus of steel = 20 x 10¹⁰ Nm⁻²
m = mass hanging
F = weight of the mass hanging
Young's modulus of steel is given as


F = 6.968 N
Weight of the hanging mass is given as
F = mg
6.968 = m (9.8)
m = 0.71 kg
Answer:
L = 7 [cm]
Explanation:
To solve this problem we must analyze each of the distances mentioned and take into account the number of covers and thicknesses of these.
The worm crosses through the sheets of the first book, this distance can be determined by the following length analysis.
4 = P + 2*C
Where:
P = thicknesses of the pages [cm]
C = thicknesses of each cover [cm]
P = 4 - 2*(0.5)
P = 3 [cm]
The distance crossed was:
L = P + 2C + P "the pages of the first book + 2 covers + the pages of the second book"
L = 3 + (2*0.5) + 3
L = 7 [cm]
The purpose of an experiment is to LEARN the EFFECT of something.
The way you do that is to CHANGE the thing and see what happens.
You can change as many things as you want to. But If you change
TWO things and observe the result, then you don't know which one
of them caused the effect you see.
Or maybe BOTH of them working together caused it. You don't know.
So your experiment is not really much good. You need to do it again.
MgCl2 is magnesium chloride.
Hope this helps!
Swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
To find more, we have to study about the spectroscopic methods.
<h3>
What is homonuclear decoupling and broadband excitation?</h3>
- A thorough understanding of the evolution of spin systems during these pulses is crucial for many of these applications since it not only helps to describe how procedures work but also makes new methodologies possible.
- Broadband inversion, refocusing, and excitation employing these pulses are some of the most popular applications in NMR, ESR, MRI, and in vivo MRS in magnetic resonance spectroscopy.
- A generic expression for chirped pulses will be presented in this study, along with numerical methods for calculating the spin dynamics during chirped pulses using solutions along with extensive examples.
Thus, we can conclude that, the swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
Learn more about the broadband excitation here:
brainly.com/question/19204110
#SPJ4