With Uranus at an average distance of 2.88 billion kilometres from the Sun and Neptune at an average distance of 4.5 billion kilometres it would be very easy to point out which of the gas giants is the coldest, but if you were you were to say that Neptune was the coldest, you’d be wrong.<span>Given that we expect planets further from the Sun to be colder than those closer, this does make Neptune and Uranus quite a mysterious pair. Uranus and Neptune are brimming with volatiles such as water, methane and ammonia and due to their composition in comparison to Jupiter and Saturn, which are comprised mainly of hydrogen and helium, are labelled the ice giants. Scientists have measured how hot Uranus and Neptune should be and have found that Uranus is very cold and very dim</span>
The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distrubuted in the space surronding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space
Answer:

Explanation:
Given
Mass = 10kg
Velocity = 2m/s
Required
Calculate the momentum of the man
Momentum is calculated as thus
or

So; to solve this question; we simply substitute 10kg for mass and 2m/s for velocity in the above formula;
The formula becomes



Hence, the momentum of the man is 
Answer:
Isaac Newton
Explanation:
Newton's laws of motion, three statements describing the relations between the forces acting on a body and the motion of the body.
<h3>Answer</h3>
(A) Resistance is directly related to length.
<h3>Explanation</h3>
Formula for resistance
R = p(length) / A
where R = resistance
p = resistivity(material of wire)
A = cross sectional area
So it can be seen that resistance depends upon 3 factors that are length of wire , resistivity of wire and the cross sectional area of the wire.
If two of the factors, resistivity and cross sectional area, are kept constant then the resistance is directly proportional to the length of wire.
<h3> R ∝ length</h3>
This means that the resistance of the wire increases with the increase in length of the wire and decreases with the decrease of length of the wire.