It is stored in the bonds between atoms
Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN
The higher the pressure, the higher boiling point of water. At lower the pressure, the boiling point of water comes down. So, the lower pressure inreases the boiling resulting more evaporation. As we go higher in altitude, the atmospheric pressure decreases. This results in decreasing the boiling point at higher altitude and increase in boiling of water. In fact, at the sea level ,the the sea water boils at 100 degree C where atmospheric pressre is normal. However , the boiling takes place at a lower temperature at the top of a mountain due to low pressure. In other words the boling is faster at the top of a mountain than that at its foot.
Answer:
just search it up you'll get ur answer