1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
3 years ago
12

Which are charecteristics of eukaryotic organisms?

Engineering
2 answers:
miskamm [114]3 years ago
3 0
Eukaryotic cells are larger than prokaryotic cells and have a “true” nucleus, membrane-bound organelles, and rod-shaped chromosomes. The nucleus houses the cell's DNA and directs the synthesis of proteins and ribosomes.
Tasya [4]3 years ago
3 0
I don’t really understand this but I have a question that I don’t understand so sorry
You might be interested in
Assume that the voltage applied to a load is V = 208-30° V and the current flowing through the load is I = 515° A. (a) Calcula
RoseWind [281]
Idk I just need point an you probably already solved this by now
3 0
3 years ago
What is vapier calliper​
SIZIF [17.4K]

Answer:

A calliper is a device used to measure the dimensions of an object.

Many types of calipers permit reading out a measurement on a ruled scale, a dial, or a digital display. Some calipers can be as simple as a compass with inward or outward-facing points, but no scale.

I'm not sure what a "Vapier" Calliper is, but I assume it's about the same thing.

4 0
2 years ago
A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl
lawyer [7]

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

3 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
Con que otro nombre se le conoce a los delitos informaticos
kow [346]
Repuesto: Cyberdelito
7 0
3 years ago
Other questions:
  • _____ is a process for identifying and modeling business events, who initiated them, and how the system should respond to them.
    8·1 answer
  • Two technicians are discussing a vehicle that will not start. Tech A states that a problem with the immobilizer system may be th
    9·1 answer
  • A sky diver with a mass of 70 kg jumps from an aircraft. The aerodynamic drag force acting on the sky diver is known to be FD =k
    9·1 answer
  • An important material for advanced electronic technologies is the pure silicon.a)-True b)-False
    9·1 answer
  • 1. Asphyxiation is a hazard posed by Compressed Natural Gas (CNG) vehicles and can be detected when you notice
    7·1 answer
  • Which best describes the similarities and differences between the Engineering and Technology pathway and the Science and Math pa
    7·1 answer
  • The ________________ attraction between the Earth and the moon is ______________ on the side of the Earth that happens to be ___
    5·1 answer
  • The in-situ dry density of a sand is 1.72Mg/m3. The maximum and minimum drydensities, determined by standard laboratory tests, a
    5·1 answer
  • I am trying to test out the software Classroom relay and I am just ask if there is any way kids can stop Classroom relay form se
    9·2 answers
  • with a digital system, if you have measured incorrectly and use too low of a kvp for adequate penetration, what do you need to d
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!