1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
2 years ago
5

The ________________ attraction between the Earth and the moon is ______________ on the side of the Earth that happens to be ___

_________ the moon, simply because it is ________. This attraction causes the water on this “_________” of Earth to be pulled ___________ the moon.
Engineering
1 answer:
Karolina [17]2 years ago
7 0

Answer:

Gravitational; strongest; facing; closer; near side; toward.

Explanation:

The gravitational attraction between the Earth and the moon is strongest on the side of the Earth that happens to be facing the moon, simply because it is closer. This attraction causes the water on this “near side” of Earth to be pulled toward the moon. These forces of attraction and inertia tends to keep the water in place and consequently, leads to a bulge of water on the near side with respect to the moon.

Also, you should note that what is responsible for the moon being in orbit around the Earth is the gravitational force of attraction between the two planetary bodies (Earth and Moon).

You might be interested in
What is voltage drop?
lord [1]

Answer:

Explanation:

It is the voltage a voltmeter would read when connected across something that has resistance.

___________0_________O______O_______

|                                                                               |

|                                              |                                |

|_____________________|  |_____________ |

                                              |

The diagram above is supposed to represent 3 lightbulbs connected in series. The vertical lines in the middle are supposed to be a battery which powers the three light bulbs. If you put a voltmeter across one of the lightbulbs, it will read a voltage that is 1/3 of the voltage of the battery.

Answer

That reading you get across the one light bulb is The Voltage Drop.

                                             

6 0
1 year ago
The present worth of income from an investment that follows an arithmetic gradient is projected to be $475,000. The income in ye
Nikitich [7]

Answer:

G = $37,805.65

Explanation:

I found this on another site:

475,000 = 25,000(P/A,10%,6) + G(P/G,10%,6)

475,000 = 25,000(4.3553) + G(9.6842)

9.6842G = 366,117.50

G = $37,805.65

4 0
3 years ago
Các đặc điểm chính của đường dây dài siêu cao áp .
rodikova [14]

Answer:

Đường dây siêu cao áp 500kV: Những chuyện giờ mới kể ... ​Ngày 27/5/1994, hệ thống đường dây điện siêu cao áp 500kV Bắc - Nam chính thức đưa ... Tại thời điểm đó, các nước như Pháp, Úc, Mỹ khi xây dựng đường dây dài nhất ... và chế ra các máy kéo dây theo đặc thù công việc của từng đơn vị.

Explanation:

8 0
2 years ago
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
Jnjn freeeeeeeeeeeeeeeeeeeeeeeeeeeeeee pointtttttttttt
kvasek [131]

Answer:

thx

Explanation:

5 0
2 years ago
Read 2 more answers
Other questions:
  • An n- channel enhancement- mode MOSFET with 50 nm thick HfO2 high- k gate dielectric (Pr = 25) has a flat band voltage of 0.5 V,
    5·1 answer
  • A string of ASCII characters has been converted to hexadecimal resulting in the following message: 4A EF 62 73 73 F4 E5 76 E5 Of
    6·1 answer
  • In the given circuit, V(t)=12cos(2000t+45)V, R1=R2=2Ω, L1=L2=L3=3mH and C1=250μF. You are required to find the Thevenin equivale
    7·1 answer
  • A smoking lounge is to accommodate 19 heavy smokers. The minimum fresh air requirement for smoking lounges is specified to be 30
    11·1 answer
  • Draw the sequence of BSTs that results when you insert the keys E, A, S, Y, Q, U, E, S, T, I, O, N, in that order into an initia
    10·1 answer
  • What are atomic bombs made out of <br> Just wondering
    10·1 answer
  • Whats is the purpose of the stator winding​
    13·1 answer
  • Two aerial photographs were taken 30 seconds apart over one east-bound lane of l-80 near Grand Island, NE. The following results
    12·1 answer
  • A three-phase Y-connected 50-Hz two-pole synchronous machine has a stator with 2000 turns of wire per phase. What rotor flux wou
    11·1 answer
  • Which type of line is represented by thin, short dashes?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!