1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
3 years ago
7

A counter-flow double-piped heat exchange is to heat water from 20oC to 80oC at a rate of 1.2 kg/s. The heating is to be accompl

ished by geothermal available at 160oC at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m2.oC, determine the length of the heat exchanger required to achieve the desired heating using the effectiveness-NTU method.
Engineering
1 answer:
lawyer [7]3 years ago
3 0

Answer:

110 m or 11,000 cm

Explanation:

  • let mass flow rate for cold and hot fluid = M<em>c</em> and M<em>h</em> respectively
  • let specific heat for cold and hot fluid = C<em>pc</em> and C<em>ph </em>respectively
  • let heat capacity rate for cold and hot fluid = C<em>c</em> and C<em>h </em>respectively

M<em>c</em> = 1.2 kg/s and M<em>h = </em>2 kg/s

C<em>pc</em> = 4.18 kj/kg °c and C<em>ph</em> = 4.31 kj/kg °c

<u>Using effectiveness-NUT method</u>

  1. <em>First, we need to determine heat capacity rate for cold and hot fluid, and determine the dimensionless heat capacity rate</em>

C<em>c</em> = M<em>c</em> × C<em>pc</em> = 1.2 kg/s  × 4.18 kj/kg °c = 5.016 kW/°c

C<em>h = </em>M<em>h</em> × C<em>ph </em>= 2 kg/s  × 4.31 kj/kg °c = 8.62 kW/°c

From the result above cold fluid heat capacity rate is smaller

Dimensionless heat capacity rate, C = minimum capacity/maximum capacity

C= C<em>min</em>/C<em>max</em>

C = 5.016/8.62 = 0.582

          .<em>2 Second, we determine the maximum heat transfer rate, Qmax</em>

Q<em>max</em> = C<em>min </em>(Inlet Temp. of hot fluid - Inlet Temp. of cold fluid)

Q<em>max</em> = (5.016 kW/°c)(160 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(140) °c = 702.24 kW

          .<em>3 Third, we determine the actual heat transfer rate, Q</em>

Q = C<em>min (</em>outlet Temp. of cold fluid - inlet Temp. of cold fluid)

Q = (5.016 kW/°c)(80 - 20) °c

Q<em>max</em> = (5.016 kW/°c)(60) °c = 303.66 kW

            .<em>4 Fourth, we determine Effectiveness of the heat exchanger, </em>ε

ε<em> </em>= Q/Qmax

ε <em>= </em>303.66 kW/702.24 kW

ε = 0.432

           .<em>5 Fifth, using appropriate  effective relation for double pipe counter flow to determine NTU for the heat exchanger</em>

NTU = \\ \frac{1}{C-1} ln(\frac{ε-1}{εc -1} )

NTU = \frac{1}{0.582-1} ln(\frac{0.432 -1}{0.432 X 0.582   -1} )

NTU = 0.661

          <em>.6 sixth, we determine Heat Exchanger surface area, As</em>

From the question, the overall heat transfer coefficient U = 640 W/m²

As = \frac{NTU C{min} }{U}

As = \frac{0.661 x 5016 W. °c }{640 W/m²}

As = 5.18 m²

            <em>.7 Finally, we determine the length of the heat exchanger, L</em>

L = \frac{As}{\pi D}

L = \frac{5.18 m² }{\pi (0.015 m)}

L= 109.91 m

L ≅ 110 m = 11,000 cm

You might be interested in
Which of the following explains the main reason to cut a piece of wood on the outside of the measurement mark?
maks197457 [2]
I think it’s D ?? I’m not completely sure tho
4 0
3 years ago
I need ideas for what to build because I have some spare wood.
Misha Larkins [42]

Answer:

small guitar with no strings?

Explanation:

it would be fun to make i think

6 0
3 years ago
4. The instant the ignition switch is turned to the start position,
geniusboy [140]

Answer:

D. Both pull-in and hold-in windings are energized.

Explanation:

The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.

The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.

4 0
3 years ago
Define factors that can change the performance of a polymer, such are additives
inna [77]

Answer:

 The performance of the polymer is basically change by the various type of factors like shape, tensile strength and color.

The polymer based products are basically influenced by the environmental factors like light, acids or alkalis chemicals, salts and also heat.

The additives is one of the type of chemical polymer which basically include polymer matrix for improving the ability of processing of the polymer. It also helps to enhance the production and requirement of the polymer products in the environment.

8 0
3 years ago
A rigid bar pendulum is attached to a cart, which moves along the horizontal plane. The rigid bar has a center of mass at L/2. T
Vikentia [17]

Answer:

See the attached picture for answer.

Explanation:

See the attached picture for explanation.

4 0
3 years ago
Other questions:
  • The smallest crystal lattice defects is a) cracks b) point defects c) planar defects d) dislocations.
    11·1 answer
  • What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5×10-4
    13·1 answer
  • The component of a fluid system where a fluid is stored, but not under pressure, is called a container.
    5·1 answer
  • 13. Write a function which is passed two strings. The function creates a new string from the two original strings by copying one
    13·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of wat
    8·1 answer
  • A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water t
    8·1 answer
  • Provide two programming examples in which multithreading provides better performance than a single-threaded solution. Provide on
    11·1 answer
  • A master stud pattern is laid out somewhat<br> like a?
    8·1 answer
  • Engine vacuum is being discussed. Technician A says that when the engine is operating under light loads, engine vacuum is low. T
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!