Metres/second² is acceleration. maybe a bit more clarification?
The power required to force the current of 4.13 A to flow through the conductor is 1927.43 watts
<h3>What is power? </h3>
This is defined as the rate in which energy is consumed. Electrical power is expressed mathematically as:
Power (P) = square current (I²)× resistancet (R)
P = I²R
<h3>How to determine the power</h3>
- Current (I) = 4.13 A
- Resistance (R) = 113 ohms
- Power (P) =?
P = I²R
P = 4.13² × 113
P = 1927.43 watts
Thus, the power required is 1927.43 watts
Learn more about electrical power:
brainly.com/question/64224
#SPJ1
Answer:
SO4
Explanation:
I'm not sure if you're asking for more than one answer but S04 is one of them, you can search it up if you don't believe me
ion with the subscript of the atoms in a polyatomic ion. There is only ONE Cu and ONE S04, so get the charge for the Cu based on the S04. The formula is S04 , and there is only ONE S04 2, so Cu's charge here must be +2 for the compound to have an overall charge of zero. = copper (Il) ion S04 = sulfate ion then CuS04 = copper (Il) sulfate
Answer:
<u>Very low</u>
<u>Explanation:</u>
It is fair to say to a reasonable extent that there are very low chances that radio transmissions from Earth or messages sent on distant space probes will ever be received by living beings
.
Bear in mind that for years some scientists have believed without any substantial evidence that there are other living beings in distant space.
Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.