Answer:
I think it is A but not 100% sure.
Step-by-step explanation:
keeping in mind that perpendicular lines have negative reciprocal slopes, hmmmm what's the slope of that line above anyway,
![\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{2}-\stackrel{y1}{(-1)}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{1}}}\implies \cfrac{2+1}{3}\implies 1 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B2%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B2%7D-%5Cstackrel%7By1%7D%7B%28-1%29%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B1%7D%7D%7D%5Cimplies%20%5Ccfrac%7B2%2B1%7D%7B3%7D%5Cimplies%201%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\underline{1}\implies \cfrac{\underline{1}}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{1}{\underline{1}}}\qquad \stackrel{negative~reciprocal}{-\cfrac{1}{\underline{1}}\implies -1}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bperpendicular%20lines%20have%20%5Cunderline%7Bnegative%20reciprocal%7D%20slopes%7D%7D%20%7B%5Cstackrel%7Bslope%7D%7B%5Cunderline%7B1%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B1%7D%7D%7B1%7D%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7Breciprocal%7D%7B%5Ccfrac%7B1%7D%7B%5Cunderline%7B1%7D%7D%7D%5Cqquad%20%5Cstackrel%7Bnegative~reciprocal%7D%7B-%5Ccfrac%7B1%7D%7B%5Cunderline%7B1%7D%7D%5Cimplies%20-1%7D%7D)
so we're really looking for the equation of a line whose slope is -1 and runs through (2,5)
![\bf (\stackrel{x_1}{2}~,~\stackrel{y_1}{5})~\hspace{10em} \stackrel{slope}{m}\implies -1 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{5}=\stackrel{m}{-1}(x-\stackrel{x_1}{2}) \\\\\\ y-5=-x+2\implies y=-x+7](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B2%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29~%5Chspace%7B10em%7D%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20-1%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B5%7D%3D%5Cstackrel%7Bm%7D%7B-1%7D%28x-%5Cstackrel%7Bx_1%7D%7B2%7D%29%20%5C%5C%5C%5C%5C%5C%20y-5%3D-x%2B2%5Cimplies%20y%3D-x%2B7)
12:(3)(2)(2)
36:(3)(3)(2)(2)
GCF:12
Answer:
<u>Acute Angle</u>
Step-by-step explanation:
<u>Obtuse Angle</u> is greater than 90 degrees
<u>Right Angle</u> is exactly 90 degrees
<u>Acute Angle</u> is less than 90 degrees