Answer:
Explanation:
Given:
V1 = 200 ml
T1 = 20 °C
= 20 + 273
= 293 K
P1 = 3 atm
P2 = 2 atm
V2 = 400 ml
Using ideal gas equation, 
P1 × V1/T1 = P2 × V2/T2
T2 = (2 × 400 × 293)/200 × 3
= 234400/600
= 390.67 K
= 390.67 - 273
= 117.67 °C
 
 
        
             
        
        
        
Metals combine with nonmetals to give ionic compounds. When naming binary ionic compounds, name the cation first (specifying the charge, if necessary), then the nonmetal anion (element stem + -ide). Hope this helps!
        
             
        
        
        
Answer:
1.
2.
Explanation:
1.Momentum is given as the product of mass by velocity of an object.
Momentum,
m=1,500kh, v=6m/s

2.Momentum,
m=7800kg, v=30m/s

new mass=7800+800=8600
As mass is increased, so does the resultant velocity as mass is directly proportional to velocity.

 
        
             
        
        
        
Answer: Ca(OH)2 (aq) + H2SO4 (aq) ---------->  CaSO4(aq) + 2H2O(l)
Explanation:
Since this is a neutralization reaction, the end product would be salt and water. In this equation Calcium will displace hydrogen from the acid because it is more reactive, resulting in the formation of CaSO4 (salt), while the displaced H2 molecule combines with OH molecules to form water.
The equation of the reaction is thus;
Ca(OH)2 (aq) + H2SO4 (aq) ---------->  CaSO4(aq) + H2O(l), in other to balance it, we add ''2'' to the water molecule in the right hand side of the equation.
Balance equation is   
Ca(OH)2 (aq) + H2SO4 (aq) ---------->  CaSO4(aq) + 2H2O(l)
 
        
             
        
        
        
The molecular weight of hemoglobin can be calculated using osmotic pressure 
Osmotic pressure is a colligative property and it depends on molarity as
πV = nRT
where
 π = osmotic pressure
V = volume = 1mL = 0.001 L
n = moles
R = gas constant = 0.0821 L atm / mol K
T = temperature = 25°C = 25 + 273 K = 298 K
Putting values we will get value of moles

we know that

Therefore
