<span>HNO2 =====> H+ + NO2-
</span>I<span>nitial concentration</span> = 0.311
<span>C = -x,x,x </span>
<span>E = 0.311-x,x,x
</span>KNO2 ====>K+ + NO2-
<span>Initial concentration = 0.189 </span>
<span>C= -0.189,0.189,0.189 </span>
E = 0,0.189,0.189
111.1 mL of water
Explanation:
Weight per volume concentration (w/v %) is defined as
weight per volume concentration = (mass of solute (g) / volume of solution (mL)) × 100
volume of solution = (mass of solute × 100) / weight per volume concentration
volume of solution = (1 × 100) / 0.9 = 111.1 mL
volume of water = volume of solution = 111.1 mL
Learn more about:
weight per volume concentration
brainly.com/question/12721794
#learnwithBrainly
Answer:
amount, pH value.
Explanation:
The buffer range is the pH range in which the buffer performs optimally, i.e., neutralizes even when a strong acid or base is introduced to it and resists any major change in its pH value.
The buffer capacity is the amount of acid or base that can be added before the pH of the buffer solution changes significantly.
Thus, the final statement becomes,
Buffer capacity is the amount of acid or base a buffer can handle before pushing the pH value outside of the buffer range.
If the equation is complete the products would be manganese chloride and oxygen gas would be given off.
MnCl2 + O2