Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
Answer A the more traing the more you will know
Explanation:
Answer:
a. 9947 m
b. 99476 times
c. 2*10^11 molecules
Explanation:
a) To find the mean free path of the air molecules you use the following formula:

R: ideal gas constant = 8.3144 Pam^3/mol K
P: pressure = 1.5*10^{-6} Pa
T: temperature = 300K
N_A: Avogadros' constant = 2.022*10^{23}molecules/mol
d: diameter of the particle = 0.25nm=0.25*10^-9m
By replacing all these values you obtain:

b) If we assume that the molecule, at the average, is at the center of the chamber, the times the molecule will collide is:

c) By using the equation of the ideal gases you obtain:

Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
because burning rubber increases the grip power