They all share the way that they are fundamentally designed: if they are quite complex, they will share the same basic logic foundations, like the way that the programming languages work. They also all share the method of construction and common and fundamental electronic components, like resistors, capacitors and transistors. As we humans design them, they make logical sense to at least someone, and probably only discounting the internet, you can probably draw logic diagrams and whatever to represent how they work.
Because they are designed by Humans, in a way they all mimic how our brains and society work. Also, as yet there are no truly intelligent technological systems, and are only able to react to a situation how they have been programmed to do so.
Answer:
The performance of the polymer is basically change by the various type of factors like shape, tensile strength and color.
The polymer based products are basically influenced by the environmental factors like light, acids or alkalis chemicals, salts and also heat.
The additives is one of the type of chemical polymer which basically include polymer matrix for improving the ability of processing of the polymer. It also helps to enhance the production and requirement of the polymer products in the environment.
Answer: a) W(earth) = 935.62 lbs
b) Mass of rocks in slugs = 29.06 slugs
Explanation:
a) From Newton's law, W = mg. Whether on the moon or on earth. Although, the mass of the rocks everywhere is the same, that is, mass of rocks on the moon = mass of rocks on earth.
W(moon) = mg(moon)
W(moon) = 154 lbs
g(moon) = 5.30 ft/s2
m = W(moon)/g(moon) = 154/5.3 = 29.06 lb.s2/ft
W(earth) = m g(earth)
g(earth) = 32.2 ft/s2
W(earth) = 29.06 × 32.2 = 935.62 lbs.
b) A slug = 1 lb.s2/ft, therefore the mass of the rocks in slugs is 29.06 slugs.
QED!
Answer: the absolute static pressure in the gas cylinder is 82.23596 kPa
Explanation:
Given that;
patm = 79 kPa, h = 13 in of H₂O,
A sketch of the problem is uploaded along this answer.
Now
pA = patm + 13 in of H₂O ( h × density × g )
pA= 79 + (13 × 0.0254 × 9.8 × 1000/1000)
pA = 82.23596 kPa
the absolute static pressure in the gas cylinder is 82.23596 kPa