Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;

where;
P₁ = 
P₂ = 
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;

where;
is the density of seawater = 1030 kg/m³

Therefore, the water is flowing at the rate of 28.04 m/s.
Answer:
Acceleration will be 
Explanation:
We have given initial speed of the car is 70 km/hr
We know that 1 km = 1000 m
And 1 hour = 3600 sec
So 
It is given that car stops in 12 sec
So final speed of the car v = 0 m/sec
Time t = 12 sec
From first equation of motion v = u+at
So 
( negative sign indicates that speed of the car will constantly decrease )
Answer:
2649600 Joules
Explanation:
Efficiency = 40%
m = Mass of air = 92000 kg
v = Velocity of wind = 12 m/s
Kinetic energy is given by

The kinetic energy of the wind is 6624000 Joules
The wind turbine extracts 40% of the kinetic energy of the wind

The energy extracted by the turbine every second is 2649600 Joules
Answer:

Explanation:
In this case, since the charged particle moves in circular motion, the centripetal force is equivalent to the magnetic force.
