Given Information:
Resistance = R = 14 Ω
Inductance = L = 2.3 H
voltage = V = 100 V
time = t = 0.13 s
Required Information:
(a) energy is being stored in the magnetic field
(b) thermal energy is appearing in the resistance
(c) energy is being delivered by the battery?
Answer:
(a) energy is being stored in the magnetic field ≈ 219 watts
(b) thermal energy is appearing in the resistance ≈ 267 watts
(c) energy is being delivered by the battery ≈ 481 watts
Explanation:
The energy stored in the inductor is given by

The rate at which the energy is being stored in the inductor is given by

The current through the RL circuit is given by

Where τ is the the time constant and is given by


Therefore, eq. 1 becomes

At t = 0.13 seconds

(b) thermal energy is appearing in the resistance
The thermal energy is given by

(c) energy is being delivered by the battery?
The energy delivered by battery is

no because nuclear energy come from kinetic not potential energy. burning a wax candle is an example of heat/thermal energy .
The solution to the questions are given as


- the direction of induced current will be Counterclock vise.
<h3>What is the direction of the
current induced in the loop, as viewed from above the loop.?</h3>
Given, $B(t)=(1.4 T) e^{-0.057 t}$




(b) 

c)
In conclusion, the direction of the induced current will be Counterclockwise.
Read more about current
brainly.com/question/13076734
#SPJ1
Answer:
swimming, cycling, and jogging
Explanation: