1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
2 years ago
15

What is the least dense planet in our solar system?.

Physics
1 answer:
Tresset [83]2 years ago
4 0

Answer:

Jupiter is the largest planet in the solar system, but it's Saturn—the solar system's second largest planet—that takes the prize for least dense. It's less dense than water, which has led many people to postulate that it would float.

You might be interested in
A spherical helium filled balloon (B) with a hanging passenger cage being held by a single vertical cable (C) attached to Earth
Gre4nikov [31]

Answer:

The tension is  T  = 4326.7 \  N

Explanation:

From the question we are told that

   The  total mass is  m  =  200 \  kg

    The  radius is r = 5 \  m

     The  density of air is  \rho_a  =  1.225 \ kg/m^3

Generally the upward  force acting on the balloon is mathematically represented as

        F_N  =   T  + mg

=>     (\rho_a  *  V  *  g ) =   T  + mg

=>   T  =  (\rho_a  * V  *  g   )  - mg

Here V is the volume  of the spherical helium filled balloon which is mathematically represented as

      V  =  \frac{4}{3}  * \pi r^3

=>   V  =  \frac{4}{3}  * 3.142 *(5)^3

=>   V  = 523.67\  m^3

So

    T  = (1.225 *  523.67*  9.8 ) -  200 *  9.8

   T  = 4326.7 \  N

5 0
3 years ago
B. The silica cylinder of a radiant wall heater is 0.6 m long
SIZIF [17.4K]

So,  If the silica cyliner of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K

To estimate the operating temperature of the radiant wall heater, we need to use the equation for power radiated by the radiant wall heater.

<h3>Power radiated by the radiant wall heater</h3>

The power radiated by the radiant wall heater is given by P = εσAT⁴ where

  • ε = emissivity = 1 (since we are not given),
  • σ = Stefan-Boltzmann constant = 6 × 10⁻⁸ W/m²-K⁴,
  • A = surface area of cylindrical wall heater = 2πrh where
  • r = radius of wall heater = 6 mm = 6 × 10⁻³ m and
  • h = length of heater = 0.6 m, and
  • T = temperature of heater

Since P = εσAT⁴

P = εσ(2πrh)T⁴

Making T subject of the formula, we have

<h3>Temperature of heater</h3>

T = ⁴√[P/εσ(2πrh)]

Since P = 1.5 kW = 1.5 × 10³ W

Substituting the values of the variables into the equation, we have

T = ⁴√[P/εσ(2πrh)]

T = ⁴√[1.5 × 10³ W/(1 × 6 × 10⁻⁸ W/m²-K⁴ × 2π × 6 × 10⁻³ m × 0.6 m)]

T = ⁴√[1.5 × 10³ W/(43.2π  × 10⁻¹¹ W/K⁴)]

T = ⁴√[1.5 × 10³ W/135.72  × 10⁻¹¹ W/K⁴)]

T = ⁴√[0.01105 × 10¹⁴ K⁴)]

T = ⁴√[1.105 × 10¹² K⁴)]

T = 1.0253 × 10³ K

T = 1025.3 K

So, If the silica cylinder of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K

Learn more about temperature of radiant wall heater here:

brainly.com/question/14548124

6 0
2 years ago
A 500-N weight sits on the small piston of a hydraulic machine. The small piston has area 2.0 cm2. If the large piston has area
weqwewe [10]

Answer:

W₂= 10000 N

Explanation:

Pascal´s Principle can be applied in the hydraulic press:

If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area (A2) of the piston:

Pressure is defined as the force (F) applied per unit area (A)

P=F/A   (N/m²)

P1=P2

\frac{F_{1} }{A_{1} } = \frac{F_{2} }{A_{2} }

F_{2} = \frac{F_{1}*A_{2}  }{A_{1}}  Equation (1)

Data

W₁ = weight sits on the small piston

F₁ = W₁= 500 N

A₁ = 2.0 cm²

A₂ = 40 cm²

Calculation of the weight  (W₂) can the large piston support

We replace data in the equation (1)

F_{2} = \frac{(500)*(40) }{2}

F₂ = 10000 N

W₂= F₂= 10000 N

6 0
3 years ago
A student throws a rock upwards. The rock reaches a maximum height 2.4 seconds after it was released.
Allisa [31]

Answer:

23.52 m/s

Explanation:

The following data were obtained from the question:

Time taken (t) to reach the maximum height = 2.4 s

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =..?

At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)

was thrown as follow:

v = u – gt (since the rock is going against gravity)

0 = u – (9.8 × 2.4)

0 = u – 23.52

Collect like terms

0 + 23.52 = u

u = 23.52 m/s

Therefore, the rock was thrown at a velocity of 23.52 m/s.

7 0
3 years ago
Which statement is true about a falling object? (Assume no
vladimir2022 [97]

I would say the answer is 3 because by falling technically the ball would be kind of moving in the air. Plus potential energy is when for example a soccer ball isnt moving

5 0
2 years ago
Other questions:
  • A light beam is incident on a piece of fluorite (n = 1.434) at the Brewster's angle.
    5·1 answer
  • Without surfactant, _______.
    9·1 answer
  • What did the greeks call the mineral they found and why?
    6·1 answer
  • If a road does not have a bicycle lane, where must a bicyclist ride their bicycle?
    10·1 answer
  • In the mobile m1=0.42 kg and m2=0.47 kg. What must the unknown distance to the nearest tenth of a cm be if the masses are to be
    5·1 answer
  • When Earth receives energy from the Sun, ____.
    7·2 answers
  • In a thermos bottle, the vacuum between two glass bottles prevents heat being conducted between the bottles. T or F
    15·2 answers
  • Complete the sentence. Friction always ____________
    10·2 answers
  • Magnetic Energy density affected by area?​
    11·1 answer
  • I’ll literlly give you points <br> and make you brainiest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!