Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
1) C. velocity
Acceleration is defined as the rate of change of velocity per unit time. In formulas:

where
is the change in velocity
is the time interval
Therefore, the correct answer is C. velocity.
2) A. 9.8m/s/s
Earth's gravity is a force, so it produces an acceleration on every object with mass located on the Earth's surface. This acceleration can be calculated, as it is given by the formula

where
is the gravitational constant
is the Earth's mass
is the Earth's radius
By substituting these numbers into the formula, one can find that the acceleration due to Earth's gravity is
.
Answer:
3540.5N
Explanation:
Step one:
given data
mass m= 0.196kg
speed v= 31m/s
distance r= 5.32cm = 0.0532m
Step two
The expression relating force, mass, velocity and distance is
F= mv^2/r
substitute we have
F=0.196*31^2/0.0532
F=0.196*961/0.0532
F=188.356/0.0532
F=3540.5N
Answer:
The frequency , speed and wavelength of an electromagnetic wave are related by the formula
Speed = frequency x wavelength
frequency = speed / wavelength
substituting the values
frequency = 3 x #10 ^8# m /s / 1 x #10^15# m
= 3 x #10^-7# /s
Answer:
D) liquid and gas
Explanation:
The three main states of matter are:
- Solid: in solids, the molecules are bond together by strong intermolecular forces, so the molecules are not free to move. Therefore, a solid has a definite shape, so it does not take the shape of its container.
- Liquid: in liquids, molecules are not bond together, so they are free to move (still, there are some weak intermolecular forces which keep them close to each other). Since in liquids molecules can slide past each other, they take the shape of the container.
- Gas: in gases, molecules are totally free to move, so gases take the shape (and also the volume) of the container.
Based on the definitions above, we can conclude that the correct answer is
D) liquid and gas