I'm not sure, I think it's option A.
Let me know if I'm wrong!
<span>Amorphous silica has a density of about 2.2 g/cm3, whereas the density of crystalline quartz is 2.65 g/cm3
</span><span>The difference in densities is
The atoms in amorphous silica do not pack as efficiently in three dimensions as compared to the atoms in quartz.
hope it helps</span>
Answer:
how ever many layers it has i think
Explanation:
Answer:
a) Height of the antenna (in m) for a radio station broadcasting at 604 kHz = 124.17 m
b)Height of the antenna (in m) for radio stations broadcasting at 1,710 kHz =43.86 m
Explanation:
(a) Radiowave wavelength= λ = c/f
As we know, Radiowave speed in the air = c = 3 x 10^8 m/s
f = frequency = 604 kHz = 604 x 10^3 Hz
Hence, wavelength = (3x10^8/604x10^3) m
λ
= 496.69 m
So the height of the antenna BROADCASTING AT 604 kHz = λ /4 = (496.69/4) m
= 124.17 m
(b) As we know , f = 1710 kHz = 1710 x 10^3 Hz (1kHZ = 1000 Hz)
Hence, wavelength = λ = (3 x 10^8/1710 x 10^3) m
λ= 175.44 m
So, height of the antenna = λ /4 = (175.44/4) m
= 43.86 m
Answer:
Planet C
Explanation:
The figure of the problem is missing: find it in attachment.
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have four planets around planet X, and the mass of each planet is proportional to its size in the figure.
As we can see from the previous equation, the magnitude of the gravitational force is proportional to the mass of the planets: therefore, the planet with largest mass will exert the largest gravitational force on planet X.
From the figure, we see that planet C has the largest size, so the largest mass: therefore, planet C exerts the greatest gravitational force on planet X.