Coronoid process of the ulna
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Answer:
18.03 N
Explanation:
From the fiqure below,
Using parallelogram law of vector
R² = 15²+5²-2×5×15cos(180-60)
R² = 225+25-150cos120°
R² = 250-150(-0.5)
R² = 250+75
R² = 325
R = √325
R = 18.03 N
Hence the resultant force of the object is 18.03 N
As we use the Kinetic energy and the equation is 1/2mv^2, changing its mass will change its speed and its energy. So more mass, more speed more energy. also the gravitational potential energy; mass x gravity x height; more mass and more height more speed as it go down to the slope! Hope it helps!