PH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH) = 10^(-11.5) = 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
pH = 2.5 implies one significant digit
I would say that you should wear a lab coat, safety goggles, and gloves
when the teacher says so - not everything in a lab is dangerous, so
there is no need to always wear these. But when the teacher says you
should - then you should.
I believe the correct answer is C, but I'm 100% on this. Hope this helped though!
-TTL
Answer:
2.7 °C.kg/mol
Explanation:
Step 1: Calculate the freezing point depression (ΔT)
The normal freezing point of a certain liquid X is-7.30°C and the solution freezes at -9.9°C instead. The freezing point depression is:
ΔT = -7.30 °C - (-9.9 °C) = 2.6 °C
Step 2: Calculate the molality of the solution (b)
We will use the following expression.
b = mass of solute / molar mass of solute × kilograms of solvent
b = 102. g / (162.2 g/mol) × 0.650 kg = 0.967 mol/kg
Step 3: Calculate the molal freezing point depression constant Kf of X
Freezing point depression is a colligative property. It can be calculated using the following expression.
ΔT = Kf × b
Kf = ΔT / b
Kf = 2.6 °C / (0.967 mol/kg) = 2.7 °C.kg/mol