Answer:
3m/s²
Explanation:
Given parameters:
Mass of object = 3.2kg
Force to the right = 16.3N
Force to the left = 6.7N
Unknown:
Acceleration of the object = ?
Solution:
To solve this problem, we use newtons second law of motion;
Net force = mass x acceleration
Net force on object = Force to the right - Force to the left
Net force = 16.3N - 6.7N = 9.6N
So;
9.6 = 3.2 x a
a =
= 3m/s²
Explanation:
Normal moles of
= volume × normal concentration
= 4.7 × 0.139 = 0.6533 mol
Moles of
in hyponatremia blood = volume × hyponatremia concentration
= 4.7 × 0.116 = 0.5452 mol
Moles of NaCl to be added = moles of extra
needed
= 0.6533 mol - 0.5452 mol = 0.1081 mol
Mass of NaCl = moles × molar mass of NaCl
= 0.1081 mol × 58.443
= 6.317g
= 6.32 g (approx)
Thus, we can conclude that mass of sodium chloride would need to be added to the blood is 6.32 g.
The traditional calcium atom has twenty protons and twenty electrons making it neutral.
The calcium in the pic is a calcium ion so the number of protons and electrons are not equivalent.
Since it's 2+ that means the ion is positively charged and for that to happen electrons are away.
So 20-2=18
There are 18 electrons
Answer:
Helium
Explanation: The ionization energy decreases from the top to bottom in groups. And increases from left to the right across a period. Therefor Helium has tge largest first ionization energy, while francium has one of the lowest.