Answer:
The characteristic of silicon that is most closely related to its chemical reactivity is that;
It is found in nature in mainly as oxides and silicates
Explanation:
Silicon, which is a member of group 14 of the periodic table has the electron configuration of [Ne]3s²3p² and has a high affinity for oxygen such that the the oxides are known as silicates and it is almost impossible to find pure silicon in nature and it is found in the universe as silica and silicates
Silicate minerals make up over 90% of the Earth's crust such that, by mass silicon is only surpassed by oxygen as the most abundant element found in the Earth's crust.
Answer:
70.6 %
Explanation:
First step, we define the reaction:
2P + 3Br₂ → 2PBr₃
We determine the moles of reactant:
35 g . 1mol / 159.8 g = 0.219 moles
We assume, the P is in excess, so the bromine is the limiting reagent.
3 moles of Br₂ can produce 2 moles of phophorous tribromide
Then, 0.219 moles may produce (0.219 . 2) /3 = 0.146 moles of PBr₃
We convert moles to mass:
0.146 mol . 270.67 g /mol = 39.5 g
That's the 100 % yield reaction, also called theoretical yield. The way to determine the % yield is:
(Yield produced / Thoeretical yield) . 100
(27.9 / 39.5) . 100 = 70.6 %
The names of the alkanes are 2,2- dimethylbutane, 2,4- dimethylhexane, 2,2,3,3- tetramethylbutane and 4- ethyl, 3,6- dimethyl heptane.
Alkanes are saturated hydrocarbon in the organic chemistry. These are organic compounds that consists of single bonded carbon and hydrogen atoms. The common formula for writing an alkane is given by CₙH₂ₙ₊₂.
Alkanes are further divided into three more types which are:
1. Chain alkanes
2. Cycloalkanes
3. Branched alkanes
Hydrogenation method is used for preparation of alkanes from alkene and alkyne.
The names of the given compounds are:
Part A:
2,2- dimethyl butane
Part B:
2,4- dimethyl hexane
Part C:
2,2,3,3- tetramethyl butane
Part D:
4- ethyl, 3,6- dimethyl heptane
Learn more about alkanes from the link given below.
brainly.com/question/16837399
#SPJ1
Answer:
This process, which is the opposite of vaporization, is called condensation. As a gas condenses to a liquid, it releases the thermal energy it absorbed to become a gas. During this process, the temperature of the substance does not change. The decrease in energy changes the arrangement of particles.
Thank you for posting your math problem here. To convert 3.9x10^5mg to dg the answer is <span>3.9 x 10^3 dg. Below is the solution:
Solution:
</span><span>1mg=0.01dg
</span><span> dg= 3.9 X 10^5mg
</span>dg = <span>(3.9 X 10^5) x 0.01
dg = </span><span>3.9 x 10^3 </span>